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Abstract 

Quantum dots are small conducting islands that can often be usefully modeled as 

tiny capacitors. Though classical charging models can explain the Coulomb blockade of 

an isolated dot, they must be modified to explain the Coulomb blockade of dots coupled 

through the quantum mechanical tunneling of electrons. This thesis presents quantum 

mechanical models for pairs of tunnel-coupled dots and uses these models to follow the 

coupled-dot blockade as it evolves from that characteristic of two isolated dots to that 

characteristic of a single composite dot. The primary aim is to find the relation between 

two quantities: the fractional peak splitting / and the dimensionless interdot channel 

conductance g, both of which go from 0 to 1 as the isolated-dot blockade changes into 

the composite-dot blockade. 

The thesis begins with Chapter 1, which introduces coupled quantum dots and the 

Coulomb blockade and highlights the contents of the succeeding chapters. 

Chapters 2 and 3 present a transfer-Hamiltonian model for weakly coupled dots and 

a one-dimensional backscattering model for strongly coupled dots. The leading and 

subleading terms in the weak- and strong-coupling expressions for / as a function of 

g are derived. The weak-coupling calculation is performed via Rayleigh-Schrödinger 

perturbation theory about the endpoint (<?,/) = (0,0). The strong-coupling calculation 

employs the bosonization approach about the endpoint (g, /) = (1,1). The results show 

substantial dependence on the number of interdot tunneling channels N^. 

Chapter 4 goes beyond the work of Chapters 2 and 3, which rely upon the assump- 

tion that tunneling and backscattering amplitudes can be treated as energy-independent. 

Chapter 4 shows that, for realistic interdot barriers, the energy dependence of these am- 

plitudes results in corrections of order Up/W, where Up is the energy cost associated with 

moving electrons between the dots and W is the energy scale over which transmission 

through the barrier varies significantly. 
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"Ah, you're moralizing. Compared to physics, that's called boring." 

—the Marquise in Fontenelle's Conversations on the Plurality of Worlds [1] 
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Chapter 1 

Introduction 

The continued push for smaller and smaller electronic devices has led to the fabrica- 

tion of submicron structures that are large on the scale of individual atoms but small 

enough that their quantum mechanical nature cannot be ignored. Modern lithographic 

techniques have permitted the creation of controllable artificial atoms or quantum dots, 

small conducting islands with discrete quantum eigenstates onto which experimentalists 

can put one electron at a time. By straddling the limits of quantum mechanical micro- 

scopies and classical macroscopics, such mesoscopic systems present physicists with a 

new array of challenges and opportunities. The capacity to construct a series of systems 

that interpolates between the macroscopic and microscopic limits forces researchers to 

come up with models and techniques that can effectively describe the gray areas in 

which classical and quantum mechanical approaches meet—in which, loosely speaking, 

h is neither zero nor one. The intermediate regime that mesoscopics occupies is almost 

inherently uncomfortable for physicists, who tend to prefer working via perturbation 

theory about the most extreme limits imaginable. Nevertheless, with care and patience, 

useful models can be constructed, and this thesis attempts to illustrate the potential 

for progress by presenting quantum mechanical models for the Coulomb blockade of 

systems of tunnel-coupled quantum dots. These models are intended to elucidate a key 
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issue in the world of quantum confinement—the question of how two isolated systems, 

with occupation numbers m and n2 that are both good quantum numbers, can evolve 

into a single well-connected supersystem, for which only the total number of electrons, 

-Ntot = (ni + n2) is a good quantum number. 

In order to expedite the reader's assimilation of the information in this thesis, this 

chapter seeks both to introduce and to summarize the key points and concepts that lie 

around and within the detailed calculations that follow. As there are now a number of 

serviceable reviews of the general field of mesoscopic physics [2, 3, 4, 5] as well as the 

more specific subfields of single-electron tunneling [6, 7, 8, 9, 10, 11, 12, 14, 13, 15, 16] 

and quantum dots [17, 18, 19, 20, 21, 22], this chapter only covers the portions of these 

fields that are necessary to appreciate the contents of Chapters 2 through 4. 

The design of the chapter is as follows. In Sec. 1.1, quantum dots are described, and 

the length and energy scales that characterize their physics are discussed. In Sec. 1.2, the 

phenomenon of the Coulomb blockade is presented, along with its orthodox explanation 

through a capacitive charging model. In Sec. 1.3, experimental observations of the 

Coulomb blockade of coupled quantum dots are reported, and the need to go beyond a 

narrowly capacitive model is observed. Sections 1.4 and 1.5 outline the structure and 

implications of quantum mechanical models for dot systems in which electron tunneling 

and backscattering are crucial components. Section 1.6 improves upon the results of 

the preceding sections by introducing a model that takes into account the finite nature 

of the potential barrier between the dots. In Sec. 1.7, the chapter is reviewed and the 

remainder of the thesis is outlined. 
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1.1    Defining Quantum Dots 

1.1.1 Dot Apologia 

To this point, the reader has been led to believe that this paper is concerned with 

quantum dots (QDs). In fact, this is less than half (or perhaps more than double) the 

story. The research presented in Chapters 2 through 4 is more properly described as 

concerned with large planar quantum dots (LPQDs), a somewhat awkward combination 

of words that this section seeks to render meaningful. The strategy for characterizing 

LPQDs consists of two parts. First, we present a theoretical conception of the large 

planar quantum dot—the quantum dot Idea [23]—which is based upon a particular mix 

of length and energy scales. We then discuss the empirical quantum dot, describing 

the primary sort of experimental system that affords concrete realizations of the LPQD 

idea. 

1.1.2 The Quantum Dot Idea 

A large planar quantum dot is a conducting island formed by laterally confining a region 

of a two-dimensional electron gas (2DEG). The characteristic vertical width w of the 

dot is that of the 2DEG itself and is less than one Fermi wavelength Xp, where the 

Fermi energy Ep accounts for only the energy of the lateral degrees of freedom. Thus, 

the degrees of freedom corresponding to the vertical dimension can be ignored because 

the electrons within both the dot and the surrounding 2DEG are restricted to the lowest 

vertical quantum level. The LPQD is planar. 

The LPQD is a dot, however, because it represents only a discrete portion of the 

2DEG, and it is a quantum dot because its characteristic lateral dimension idot is much 

less than the phase decoherence length 1$ over which the individual electronic wave- 

functions decohere. The decoherence length diverges as the temperature of the system 

goes to zero, and, therefore, the assumption L&ot < 1$ is at least always theoretically 
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achievable in the zero-temperature limit {k&T -»• 0). 

What remains to be explained is what makes the LPQD large. Quite simply, it is 

large because the dot length Ldot is much greater than the Fermi wavelength AF. The 

average level spacing 6 of the dot's single-particle eigenstates is therefore much less than 

the Fermi energy EF, and, hence, the number N of electrons on the dot is much greater 

than 1. We are particularly concerned with dots for which N equals a few hundred. 

The explanation of the phrase large planar quantum dot is summarized by the fol- 

lowing hierarchy of length scales: 

w < \F < Ldot < 1+ . (1.1) 

LPQDs can also be characterized by a ladder of energy scales. We have already 

encountered two such scales, the average level spacing 6 and the much larger Fermi 

energy EF. Corresponding to the vertical height w of the 2DEG, we have a third energy 

scale Ew, the confinement energy of the 2DEG, which is the characteristic scale of the 

level spacing of the vertical modes and is, by assumption, larger than EF. There are 

two other important scales for the isolated quantum dot that we currently have in mind: 

the charging energy U and the thermal energy kBT. In addition to being low enough 

that Xdot < £</,, the thermal energy kBT must be at least about four times smaller than 

the average level spacing for individual dot eigenstates to be resolvable [18]. Since we 

wish only to worry about ground state wavefunctions, our dots should be in the limit 

4kBT < 6. 

The final energy scale, the charging energy U, results from the electrostatic repulsion 

between electrons on the dot. It equals the change in the chemical potential of the 

electrons when one electron is added to the dot. Consequently, at least for simple 

geometries in which the dot is essentially an isolated disk of charge [24], U is expected 

to scale roughly as e2/idot, whereas the level spacing 6 scales as 2irh?/mL2
Aot, where m is 

the effective mass of an electron in the 2DEG. Thus, for large dots, U is an intermediate 

energy scale, much larger than S but much less than the Fermi energy Ep. The hierarchy 
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of energy scales is 

4kBT <6<U <EF<EW. (1.2) 

The development of the idea of the large planar quantum dot (LPQD) is now com- 

plete. It is time to descend to a more sublunary sphere to consider the empirical LPQD 

as realized in GaAs/AlGaAs heterostructures. Since the only quantum dots explicitly 

considered in this thesis are LPQDs, we will henceforth use the shorthand quantum dots 

(QDs) to refer to large planar quantum dots (LPQDs), unless explicitly noted otherwise. 

1.1.3    The Empirical Quantum Dot 

The sorts of Coulomb blockade and tunneling effects that are examined in this thesis 

have been observed in a number of different experimental systems, ranging from metallic 

films to silicon-inverson layers [13]. The primary systems for realization of large planar 

quantum dots (LPQDs) are, however, split-gate semiconductor heterostructures that 

consist of alternating layers of gallium arsenide (GaAs) and aluminum gallium arsenide 

(Al^Gai-^As) sitting beneath a layer of AlGaAs doped with silicon donors and an array 

of surface metallic gates [see Fig. 1.1(a)]. 

In such systems, electrostatic forces confine carrier electrons to a region only a few 

nanometers wide (w ~ 4 nm) at the interface between a pair of AlGaAs and GaAs 

layers [2]. The carrier electrons in the heterostructures are generally cooled to tempera- 

tures on the order of a tenth of a Kelvin. The result is a high-mobility two dimensional 

electron gas (2DEG) with a typical carrier concentration ns of 4 x 1011/cm2, an electron 

effective mass of about 0.067 me (where the free electron mass me = 9.1 X 10-28 g), a 

Fermi wavelength of about 50 nm, and elastic and inelastic scattering lengths l<,\ and 

£inei on the order of 10 /xm [2]. 

Quantum dots are carved out of the 2DEG by applying negative voltages to the sur- 

face metallic gates [7, 15, 18, 19, 21, 22]. The negative potential repels electrons from 

the regions of the 2DEG lying directly under the gates.  Hence, given an appropriate 
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Figure 1.1: (a) Representative cross-section of a split-gate semiconductor heterostruc- 
ture. The silicon donor layer (in black) lies between the AlGaAs spacer and barrier 
layers. The two-dimensional electron gas (2DEG) sits at the interface between the Al- 
GaAs and GaAs layers, located a distance d beneath the surface metallic gates (striped), 
(b) A surface gate pattern that can be used to create the barriers delimiting a quantum 
dot. The region to which electrons on the dot are confined is suggested by the circle. 

cookie-cutter pattern for the gates [see Fig. 1.1(b)], application of negative potentials 

results in the formation of dots, laterally confined islands of electrons. If the character- 

istic size of such an island, Ldot, is several tenths of a /an, we have the proper relation 

of length scales for a large planar quantum dot (recall the inequalities of Eq. 1.1). 

It is worth considering what the dot looks like to its electronic inhabitants. We 

can thereby gain a sense of the self-consistent potential in which the electrons move. 

Figure 1.2 gives a graphical representation of a possible potential landscape for a single 

quantum dot in a two-dimensional electron gas. The potential well within the interior of 

the dot is pictured as essentially flat. In reality, there are bumps in this plain, primarily 

as a result of the localized fields from silicon impurities in the donor layer. However, such 

roughness can generally be neglected compared to the smoothly modulated potential 

induced by the surface metallic gates, which delineates the dots and therefore determines 

the average intradot level spacings. 

The most prominent portions of this smoothly modulated potential are the high-rise 
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Figure 1.2: Representative ansatz for the potential landscape of a large planar quantum 
dot. Disorder due to the donor impurities is assumed small, so the interior of the dot 
can be pictured as essentially a plain. The "flat-tops" of the near and far edges are an 
artifact of truncating the potential at an arbitrary positive energy. 
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Figure 1.3: A saddle-shaped tunneling channel. 
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zones of the dot walls. In order for the dot to be well-defined, the maximum heights of 

these barriers must be at least of the order of the Fermi energy Ep. If there is a space 

between two of the surface gates used to define the dot [see Fig. 1.1(b)], the walls that 

define the dot can be punctured by a pass, a tunneling channel between the dot and the 

2DEG that takes a characteristic saddle shape (see Fig. 1.3). 

From the above discussion of the potential landscape, it is clear that there is an 

additional length scale £ that was not covered in our contemplation of the quantum dot 

idea. This length scale is the characteristic distance over which the potential changes 

from its maximum values directly underneath the metallic gates to its sea-level values in 

the plains of the dot and the 2DEG. Often called the device resolution, £ is expected— 

in the split-gate geometry of Fig. 1.1(a)—to be approximately equal to the distance 

d between the surface gates and the 2DEG [19, 25, 26]. Since the surface gates are 

generally between 50 nm and 200 nm from the 2DEG, £ is usually larger than the Fermi 

wavelength AF, though of the same order of magnitude. The relative magnitude of £ is 

vital in determining whether transmission through the saddle-shaped tunneling channels 

can be treated as independent of the energy of the incident electrons. 

Having completed our discussion of the length scales of the empirical LPQD, we 

now consider the relevant energy scales. For a typical GaAs/AlGaAs LPQD with 

Xdot — 0.5 //m and an electron temperature of 0.1 K, we have the following approximate 

equivalences: kBT ~ 10 fieV, S ~ 50 fieV, U ~ 500 /*eV, and EF ~ 14 meV [2, 19, 22]. 

A final energy that we should consider is the energy scale W over which transmission 

through the saddle-shaped channels changes significantly. The size of this energy is 

related inversely to the device resolution £. If W is much greater than both the level 

spacing 6 and the charging energy U, the transmission probability can probably be 

approximated as independent of the energy of the incident electrons. However, as noted 

in Sec. 1.6 and in more detail in Chapter 4, in typical LPQDs, the scale W is probably 

a bit closer to U than one might like, and therefore at least the leading effects due to 
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U/W ^ 0 should be considered. 

Chapter 1: Introduction 

1.1.4    Coupled Dots 

With the addition of the transmission energy scale W, we have completed the list of 

length and energy scales that characterize a single closed quantum dot at low temperatures- 

i.e., a quantum dot that, to first approximation, does not exchange electrons with its 

surroundings and has a resolvable spectrum of eigenstates. To zeroth approximation, 

the closed quantum dots can be thought of as surrounded by infinite potential walls 

through which electrons cannot tunnel. 

In fact, quantum dots are never completely closed off from their surroundings, and 

the tunneling rate between the dot and its environment must only fall below a certain 

threshold for the dot to be considered closed. The relevant criterion can be determined 

by considering the case of a single dot coupled via electron tunneling to a bulk lead 

[see 1.4(a)]. Via a number of arguments [21, 35, 36, 33, 38, 39], ranging from those 

employing relatively sophisticated quantum mechanical models to those based upon 

the RC time of a circuit model or upon the Thouless criterion [40], it has been shown 

that it is necessary that the tunneling rate Tj between the bulk lead and the dot's jth 

lowest-energy single-particle state satisfies the inequality [9, 14] 

hTj<6, (1.3) 

where the jth lowest state is assumed to be below or not far above the Fermi surface. 

Since hTj is the level width due to decay into the leads, satisfaction of this inequality 

is necessary for the individual single-particle eigenstates to be resolvable. It is also 

equivalent to requiring that the conductance between the dot and lead is much less 

than e2/h. 

Of course, what most of this thesis is about is not a single closed dot but, rather, 

a system of two coupled dots. Such a system can be created by applying negative 

voltages to the gate pattern shown in Fig. 1.4(b). If the external gate voltages Vxl and 
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2DEG 

(b) 

Figure 1.4: (a) Surface gate pattern for a single dot coupled to a bulk lead by a tunnel- 
ing channel. Regions of significant electron occupation are suggested by the partially 
enclosed curve. The voltage Vb controls the rate of tunneling between the dot and the 
lead. Vg determines the average number of electrons on the dot. Vs and Vx are held 
constant, and tunneling through the barrier controlled by Vx is negligible compared to 
that through the barrier controlled by V&. (b) Two adjacent tunnel-coupled dots. Vg\ 
and Vg2 control the average number of electrons on the individual dots. Vj, controls 
tunneling between the two dots. The other voltages are fixed, and tunneling to the 
leads is assumed negligible compared to that between the dots. 
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Vx2 are sufficiently negative, the two-dot system can be considered closed with respect 

to the surrounding leads. There is then a well-defined integer number of electrons on 

the double dot. On the other hand, if the central gate potential Vb is variable, there 

is not necessarily a well-defined number of electrons in either half of the double dot; 

the individual dots are not necessarily closed with respect to each other. When Vb is 

strongly negative, the conductance through the interdot barrier Gb is much less than 

e2/h, and the double dot consists of two largely closed individual dots that are only 

weakly coupled through the tunneling of electrons between them. When the negativity 

of Vb is relaxed, the conductance Gb increases, and the dots become strongly coupled, 

with charge fluctuations rendering their individual occupation numbers ill-defined. The 

total number of electrons on the double dot remains a good quantum number, however, 

and, if the barrier Vb is lowered far enough (without, of course, being lowered so far that 

electrons leak out of the center of the double dot), one might expect that the system 

begins to behave like a single composite dot formed from the fusion of the two originally 

isolated dots. This thesis is largely about how such a fusion can occur. 

A point worth stressing is that the two-dot systems we study are always closed with 

respect to the surrounding leads. The tunneling rates Tj are such that hTj is not only 

much less than the average intradot level spacing 6 but also on the order of a fifth of 

the thermal energy kBT. The conductance through the external barriers energized by 

Vxl and Vx2 [recall Fig. 1.4(b)] is therefore not much more than a handful of hundredths 

of e2/h and can be neglected in looking for the ground state of the two-dot system. In 

contrast, as the voltage Vb is varied, the conductance Gb goes from nearly zero to values 

on the order of or greater than e2/h and is therefore not negligible. 

With these comments on quantum dot closure, our tour of the definition of quantum 

dots has come to an end. Along the way, we have encountered a menagerie of energy 

scales centered upon the charging energy U. We now consider how these scales can be 

used to make sense of the Coulomb blockade. 
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1.2    The Orthodox Coulomb Blockade 

1.2.1 Interactions in Artificial Atoms 

The quantum dots described in Sec. 1.1 are sometimes referred to as artificial atoms. 

They differ significantly from natural atoms, however, both in terms of the nature of 

their confining potential, which lacks the high symmetry of a central potential [41], 

and in terms of their characteristic size Zdot) which is on the order of thousands of 

angstroms and therefore much larger than an atomic radius. Since, at least in the 

simplest geometries, the average single-particle level spacing goes roughly as l/L\ot and 

the typical electronic energy of repulsion goes roughly as 1/L_0t, the size discrepancy 

between natural and artificial atoms means that the effects of Coulomb repulsion are 

much more important in the behavior of quantum dots than in natural atoms [20]. 

Perhaps the most dramatic example of such size-driven electron-electron effects is the 

phenomenon known as the Coulomb blockade. 

1.2.2 Phenomenological Description of the Blockade 

To describe the Coulomb blockade we refer to Fig. 1.5, which gives a caricature of 

a quantum dot coupled capacitively to a gate at the potential Vg and coupled both 

capacitively and via tunneling channels to bulk leads at the potentials V_,_ and V_,i, 

respectively. In the absence of the Coulomb blockade, one might expect that, for an 

arbitrary value of Vg and a small value for the bias AV = V_a — V_,i, the current through 

the dot would be proportional to AV. However, when both k&T and AV are tens of 

microelectronvolts or less, the experimentally observed current is essentially zero for 

most values of Vg, the exceptions being roughly evenly spaced values of Vg at which 

nonzero conductance peaks occur. The fact that the conductance through the dot is 

usually zero is the effect known as the Coulomb blockade. 

Why do we suspect the blockade is Coulombic? If it were to dissolve when kßT or 
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Figure 1.5:  Caricature of a system of one dot tunnel-coupled to two bulk leads and 
capacitively coupled to a surface gate. 

AV rose to values on the order of the average level spacing 6, it might be attributed to 

the discreteness of 6. However, it persists to values of kBT and AV equal to hundreds 

of microelectronvolts—i.e., until kBT and AV are of the order of the charging energy 

U. 

1.2.3    Orthodox Model for the Single-Dot Blockade 

To understand more precisely whence the Coulomb blockade arises, it is helpful to view 

the quantum dot as a capacitor characterized by the potential energy Q2/2Cz, where 

Q is the net charge on the dot and C2 is its total capacitance. Having adopted this 

orthodox model, one can then construct a circuit diagram showing the couplings between 

the dot and the surrounding gates and leads. Calculation of the energy E of this circuit, 

including the work done in charging the dot-capacitor, yields the result [6, 7, 8, 10, 11, 

12, 13, 15, 16] 

£ = f("-0)2, (1.4) 
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where U = e2/Cs, N is the number of excess electrons on the dot, and <f> is a dimen- 

sionless parameter that depends linearly on the gate voltage Vgate- 

0=^ + 00, (1.5) 
e 

where <f>o is a constant and Cg is the capacitance between the dot and the gate. 

For a dot that is isolated from its surroundings and cold (hTj and U-QT are small), the 

number n assumes only well-defined integer values, and the integral nature of n provides 

a ready explanation for the Coulomb blockade. When <f> does not equal m + 1/2, where 

m is an integer, the ground state of the circuit is unambiguously given by the state in 

which n is the integer n^ that is nearest to <f>. The energies of states in which n ^ n^ 

exceed the ground-state energy by at least 

AE=|(l-2|n,-^|). (1.6) 

When both the thermal energy k-ßT and the voltage bias AV are much less than AE, 

processes that change the number of electrons on the dot are effectively blocked, and 

virtually no current can pass. The result is the Coulomb blockade. 

1.2.4    Degeneracies and Conductance Peaks 

What happens when <f> equals m -f 1/2? Then, there are two degenerate ground states 

for the circuit—one in which there are n_ = {2<j> —1)/2 electrons on the dot and another 

in which there are n+ = n_ + 1 = {2(f) + l)/2 electrons on the dot. Thus, depending 

upon which of the n± states the circuit is in, an electron can be added or removed 

with energetic impunity. Current can flow. Consequently, as <fr is varied, one expects 

the regions where there is essentially no current through the dot to be punctuated by 

evenly spaced conductance peaks centered at values of Vg that yield <f> = m + 1/2. 

The existence and periodicity of the conductance peaks can be explained graphically 

by plotting the parabolic energy curves En(<j>) [see Fig. 1.6(a)]. These curves give the 

energies of states in which the number of "excess" electrons on the dots is given by the 
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particular integer values n. For cf> between n - 1/2 and n + 1/2, the curve En((f>) is the 

lowest-energy parabola, and there is a finite excitation energy to the next lowest-energy 

curves, En±1(4>). At <j> = n ± 1/2, on the other hand, the En((f>) curve is degenerate 

with the En±i((f>) curve. At such points, current flows, and conductance peaks result 

[see Fig. 1.6(b)]. 

The fact that the conductance peaks have a finite width is a consequence of both 

thermal broadening (kBT ^ 0) and lifetime broadening (hTj ^ 0). In our energy hierar- 

chy (recall the discussion in Sec. 1.1.3), the lifetime broadening is negligible compared 

to the thermal broadening, and, since 4kBT < 6, the shape of conductance peaks near 

4> = m + 1/2 is given by [9, 42] 

e2       /    pLlpL2    \ 
Gdot = 4kB~f \vi+T^) COsh~2 [e"(m' ^/^B?1] , (1.7) 

where e(m, cf>) = em - eF + U (1/2 - \m - <f>\), em is the kinetic energy of the mth lowest- 

energy single-particle state on the dot, and T^ is the tunneling rate between this state 

and lead i. 

1.2.5    Orthodox Model for the Double-Dot Blockade 

Our analysis of the single-dot Coulomb blockade can be straightforwardly extended to 

that of the Coulomb blockade of two dots in series. The schema for the system is shown 

in Fig. 1.7. Once again there are two leads with voltages VLl and VLI providing a bias 

AF = VL2 - VLI. There are now, however, two side gate voltages, Vgl and Vg2, that can, 

in theory at least, be varied separately to control the number of electrons on each of 

the dots. If the two dots are well isolated from each other—i.e., if interdot electrostatic 

interactions and tunneling are negligible—the energy of the system equals the sum of 

the energies of the individual dots: 

£ = EyK-^)2, (i.8) 
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Figure 1.6: (a) Energy curves in the "orthodox model" for a single dot coupled capac- 
itively to a surface gate. Energies are given in units of the dot charging energy U; the 
gate voltage is in units of e/Cg. For each integer number n of "excess" electrons on 
the dot, there is a corresponding energy curve, labeled [n], that is a parabolic function 
of the gate voltage, (b) Conductance through the dot as a function of the gate volt- 
age. The conductance peaks are schematic; for simplicity they are thermally broadened 
and symmetric in shape. The peaks occur at the points of degeneracy of the energy 
parabolas. 
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Figure 1.7: Caricature of a system of two tunnel-coupled dots with adjoining bulk leads 
and occupation-controlling surface gates. 

where n,- is the number of electrons on dot i, fr = CgiVgi/e, U{ = e2/CSi, C<zi is the 

total capacitance of dot i, and Cgi is the capacitance between dot i and the ith side 

gate. 

Studies of the implications of Eq. 1.8 for the Coulomb-blockade behavior of the 

double-dot system have led to an understanding of a rich variety of effects that result 

from asymmetry between the two dots—i.e., from Csi ^ CS2, etc. [47, 48]. However, 

since this thesis studies the change in the double-dot Coulomb blockade as a result of 

interdot tunneling, it is best to separate the issue of asymmetry from our concerns by 

considering a system of symmetric dots in which the effect of interdot coupling is most 

discernible and dramatic. 

1.2.6    Uncoupled Symmetric Dots 

First we should clarify what is meant by a system of symmetric dots. In essence, we 

mean that the dots are electrostatically symmetric—i.e., that electrostatic quantities 

that are essentially invariant under change of the gate voltages Vgi, such as the total 

capacitances CEt- and the gate-to-dot capacitances Cgi, are the same on both dots. 
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Under these conditions, Eq. 1.8 simplifies to 

i=l 

If we assume an extra symmetry for the dots, fa = fa, the energy becomes a 

function of a single voltage parameter <f> = fa, and each pair of integer occupation 

numbers {n1,n2} is associated with an energy function E{nin2}(4>) that is parabolic 

in <j>. As can be surmised from Fig. 1.8(a), these functions yield parabolas that are 

identical in shape, their only distinguishing feature being the locations of their minima. 

1.2.7    Peak Splitting and Even-Odd Energy Shifts 

Since the decisive issue for the Coulomb blockade is whether the ground state is degener- 

ate, we are primarily interested in the lowest-energy parabolas -E/vtot (</0 that correspond 

to specific values of the double-dot occupation number JVtot = (n\ + n?). The values 

of nj and ra2 for such parabolas are given by the formula n\ = n2 = Ntot/2 when iVtot 

is even and by the formula n\ = n2 ± 1 = (-/Vtot ± l)/2 when JVtot is odd. For even 

Ntot, the minima of the ENtot(fa parabolas all lie on the line E = 0. For odd Ntot, the 

minima of the parabolas lie along a different line of higher energy, E = (7/4. For both 

even and odd parabolas, the ^-coordinate of the minimum is Ntot/2 (see Fig. 1.8). 

For small bias, the conductance through the double dot is close to zero except near 

4> = 4>m, where <f>m = m + 1/2. Around these values of <f>, conductance peaks are 

observed. Unlike the single-dot case, however, these peaks are essentially double or 

degenerate because for <f> = <f>m it is true both that E2m — -E-(2m+i) and that Er2m+i) = 

E(2m+2)- Thus, the ^-values mark the intersection of four parabolas, rather than two. 

Now suppose that the lowest-energy odd parabolas shift down relative to the lowest- 

energy even parabolas by a distance A. Then, the single intersection at <f> — <f>m and 

E = U/4 is replaced by two separate intersections at 4> = (f)m±A/U. Thus, as indicated 

in Fig. 1.8, the single peak at (f>m splits into two distinct subpeaks equally spaced 
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Gate Voltage 

Figure 1.8: (a) Energy curves in the "orthodox model" of a symmetric two-dot system 
coupled capacitively to a gate potential. Energies are given in units of the charging 
energy U; the gate voltage is in units of e/Cg. In the absence of interdot coupling, 
each state with occupation n; of the zth dot has a corresponding energy curve, labeled 
(ni, n2), which is a parabolic function of the gate voltage. The zero of energy coincides 
with the lowest possible energy for states in which the total two-dot occupation JVtot = 
{n1+n2) is even. The solid odd-JVtot parabola gives the lowest-energy curve for Ntot = 1 
when there is no interdot coupling. The dotted parabola is the shifted-down energy 
curve that results when there is nonzero coupling. The relevant degeneracy points are 
indicated by a black dot for zero coupling and white dots for nonzero coupling, (b) Zero- 
coupling conductance through the double dot as a function of the gate voltage The 
conductance peak shapes are schematic. The peaks occur at the points of degeneracy of 
the lowest-energy zero-coupling parabolas, (c) Nonzero-coupling conductance through 
the double dot as a function of the gate voltage. The peaks are aligned with the 
perturbed degeneracy points. Each zero-coupling peak has split into two separate peaks 
equally distant from the zero-coupling peak position. Increasing the interdot coupling 
increases the separation between the paired peaks until the full set of peaks is again 
regularly distributed, with half the original period. 
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about (f)m, with the magnitude of the peak splitting—the distance between the paired 

subpeaks—being linear in A. 

If the odd parabolas shift down by exactly A = U/4, their minima then lie along the 

line E = 0, and the subpeaks are distributed evenly at the positions <f>sm = (2m + l)/4, 

where m is an integer. The conductance peak pattern is identical to the pattern char- 

acteristic of a single dot with total capacitance 2Cs; and dot-to-gate capacitance 2Cgi. 

Accordingly, in terms of the phenomenological parameter A, the orthodox model pro- 

vides a framework for understanding the evolution of the Coulomb blockade of two 

isolated dots into that of a single composite dot that is essentially the sum of the origi- 

nal individual dots. 

1.2.8    Center-of-Mass Coordinates 

Another way of using the orthodox model to understand the transformation of the 

two-dot blockade is to express the energy (recall Eq. 1.8) in the charging analog of 

center-of-mass coordinates—i.e., to express E in terms of the total double-dot occu- 

pation JVtot = («l + TI2) and half the difference between the individual dot occupations 

n = («2 — n\)/2. One then has [51, 52] 

E = ^(iVtot - $tot)
2 + Up(n - p/2)2 , (1.10) 

where $tot = <h + <j>2 and p = 4>2 - 4>i- For the circuit of Eq. 1.9, in which the 

interdot capacitance is assumed to be zero, 2£/$ = Up = U, where U is the charging 

energy of the individual dots. In general, however, the interdot capacitance is not zero, 

and one then finds that {/$ ^ Up. In particular, it turns out that £/$ = e2/2Cs and 

Up = e2/(Cz + 2Cint), where C-mt is the interdot capacitance and Cs is now defined to 

be the total capacitance of one of the dots minus the interdot capacitance [49]. 

From comparison with Eq. 1.4, it is clear that the first term on the right side of 

Eq. 1.10 is the energy for a single dot with a capacitance equal to the sum of the 

capacitances of the two individual dots.  Consequently, transformation of the two-dot 
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system to a composite-dot system must come through cancellation or elimination of 

the term proportional to Up. In situations where p = 0, this corresponds to shifting 

the lowest-energy odd parabolas down by A = Up/4 relative to the lowest-energy even 

parabolas. 

1.2.9    Splitting through Capacitive Coupling 

We have yet to suggest a physical mechanism for inducing such a shift. Perhaps the most 

obvious means of doing this is to send Up itself to zero—or at least to some value on the 

order of the level spacing 6. This can be done by making the interdot capacitance Cint 

very large compared to CE. Since Cint tends to be less than 0.1CS when the dots are 

well isolated, sending Up to zero requires that Cmt grow by a factor on the order of 100. 

Such growth in C-mt is difficult to achieve in a two-dimensional geometry. When coplanar 

regions of charge are moved closer together, the growth in their intercapacitance is at 

most logarithmic and therefore generally cut off before it can multiply by 100 [50]. Thus, 

though interdot capacitive coupling is expected to make a small and relatively constant 

contribution to the peak splitting, we must look for another means of ridding ourselves 

of the Up-teim. A series of recent coupled-dot experiments has done much to point us 

in the right direction. 
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1.3    Experimental Results for the Symmetric Double Dot 

1.3.1    Measurements of Peak Splitting and Conductance 

The double-dot experiments performed by F. Waugh, C. Crouch, C. Livermore, R. 

Westervelt, and their collaborators [43, 44, 45, 46] indicate that a primary mechanism 

for the emergence of composite-dot behavior is the fluctuation of charge between the dots 

when interdot tunneling channels are opened. Waugh et al. use the surface-gate pattern 

shown in Fig. 1.4(b) to create a system of symmetric dots that fits the characteristics 

of the two-dot system of Sec. 1.2. They then measure the conductance through the dot 

as a function of the side gate voltage Vg—i.e., as a function of <fr = CgVg/e—and repeat 

this measurement for different values of the voltage V&, which controls the strength of 

the interdot barrier. They find that as the voltage Vj, is made less negative—i.e., as 

the interdot barrier is lowered—the conductance peak distribution changes from that 

characteristic of two isolated dots to that characteristic of a single composite dot. 

In addition to observing peak splitting and convergence to single-dot behavior, 

Waugh et al. measure the conductance G& through the interdot barrier as a function of 

Vb- They do this by measuring the conductance through the double dot after exterior 

gates such as Vx\ and VX2 have been de-energized. Decreasing the magnitudes of these 

negative gate potentials lowers the barriers that separate the dots from the bulk leads. 

After sufficient reduction of the exterior barriers, the charged regions formerly described 

as dots are essentially just peninsular extensions of the leads. There are no longer any 

capacitive charging energies exclusively associated with these regions. The capacitances 

associated with the bulk leads are, needless to say, very large, and the corresponding 

charging energies are therefore much less than the thermal energy k#T. The Coulomb 

blockade has been eliminated. 

Once the external gates have been turned off, the dominant resistance in going 

from lead 1 to lead 2 is the resistance due to the interdot barrier. Thus, leaving room 
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for correction due to the fact that lowering the external barriers results in a partial 

lowering of the interdot barrier [19, 22, 43, 44, 45, 46], one can find the conductance Gb 

by measuring the conductance between leads 1 and 2. 

The experiments find that Gb rises in a series of conductance steps, each of height 

2e /h. This phenomenon of conductance quantization, familiar from studies of quantum 

point contacts and quantum wires [2, 3, 4, 27, 28, 29, 30, 31, 32], is explained by the fact 

that, as Vb is made less negative, the saddle-shaped potential between the dots becomes 

broader and flatter. The alteration in shape and height is accompanied by a decrease 

in the minimum energy E% of an electron in the mth lowest-energy transverse mode of 

the saddle region—where the transverse direction is the direction perpendicular to the 

direction of propagation through the constriction (the y-direction in Fig. 1.9). As EtT 

descends through the Fermi energy EF, the conductance through the mth mode rises 

rapidly from nearly 0 to its saturation value of 2e2/h, giving one conductance quantum 

for each of the two spin-degenerate channels that have been opened. Thus, the 2e2/h 

steps in the conductance Gb mark the successive opening of transverse orbital modes 

through the saddle. 

The key finding of Waugh et al. is that, within the range of values of Vb in which Gb 

goes from nearly 0 to approximately 2e2//i, the Coulomb-blockade peak distribution goes 

from that characteristic of two isolated dots to that characteristic of a single composite 

dot. Based on our understanding of conductance quantization, it appears that the 

convergence to composite-dot behavior coincides with the opening of a single orbital 

mode through the saddle between the dots. 

1.3.2    Arguments for Conductance-Controlled Peak Splitting 

This correlation between the opening of one orbital mode and the emergence of composite- 

dot behavior suggests that the correct physical mechanism for the transformation of the 

Coulomb blockade is the back-and-forth movement of charge that occurs when an inter- 
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Figure 1.9: Top-down view of the constricted interdot connecting region. The width of 
the constriction is on the order of the Fermi wavelength A^. Its length is on the order 
of the device resolution f. 

dot tunneling channel is opened. As the interdot conductance becomes of order e2/h, 

fluctuations in the charge on the dots make the assumption of quantized integer oc- 

cupation numbers n\ and n-i increasingly less valid. There is less and less reason to 

suppose that odd parabolas should be shifted upwards relative to even ones because the 

expectation value of n, which makes the determinative distinction between the odd-iVtot 

and even-iVtot cases, is no longer a good quantum number. 

The correlation between the opening of a single orbital mode and the transformation 

of the Coulomb blockade renders even more implausible explanations for the develop- 

ment of the composite-dot blockade via growth in the interdot capacitance C-mt- There 

is indeed some increase in Cint as the barrier between the dots is lowered and electrons 

on the dots become less separated. However, as the electrons generally only become 

closer in the vicinity of the narrow saddle, the interdot capacitance is not expected to 

grow significantly. Semiclassical simulations of two-dot geometries by M. Stopa confirm 
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that opening a single orbital mode results in only negligible growth in the corresponding 

intercapacitance [41]. 

Thus, it is reasonable to suspect that the principal physical cause of the observed 

peak splitting is the increase in the interdot conductance as the barrier between the 

dots is lowered. Recalling Eq. 1.10, we see that, for this to be true, the existence of a 

nonzero interdot conductance Gb must lead to a p-dependent energy shift that cancels 

the /9-dependent term of Eq. 1.10. 

1.3.3    Dimensionless Formulation of the Problem 

It is worth taking a little time to formulate this last statement in a more mathematical 

manner. Let us define the dimensionless interdot channel conductance g by the formula 

g = Gb/iN^/h), where, in the experiments under consideration, the number of tun- 

neling channels Nch equals two. Let us similarly define a dimensionless parameter /, 

the fractional peak splitting, which equals the ratio between the magnitude of the peak 

splitting at a given value of g and its saturation magnitude for g = 1. From Sec. 1.2, it 

follows that / = A/(U/4), where A is the coupling-induced shift of the odd-JVtot ground 

states relative to the even-iVtot ground states. It then foUows that our goal is to develop 

physically meaningful models that allow determination of / as a function of both g and 

the number of tunneling channels Nch. We can then compare the result 

with the experimental data (see Fig. 1.10) and, if the comparison is favorable, gain some 

confidence in the credibility of explaining the peak splitting in terms of the interdot 

conductance. 
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Figure 1.10: Experimental and theoretical results for the fractional peak splitting / as 
a function of the dimensionless interdot conductance g when N& = 2. The solid lines 
are the results in the weak and strong-coupling limits when the tunneling amplitudes 
are assumed to be energy-independent. The small-dashed curve that extends from 
(g, f) = (0,0) to (g, /) = (1,1) is an interpolating curve that conforms with these results. 
The dot-dashed line is the 2irU/hu = 1 curve derived when the energy dependence of the 
tunneling amplitudes is taken into account. The stars, triangles, and squares symbolize 
different sets of experimental data from Waugh et al. [43, 44] and Livermore et al. [46], 
the squares being the most recent. 
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1.4    Theoretical Results for Weakly Coupled Dots 

1.4.1    Transfer-Hamiltonian Model 

In the limit of weakly coupled dots—i.e., for g < 1—we can use a transfer-Hamiltonian 

approach for an arbitrary number N& of interdot tunneling channels to find the relation 

between the dimensionless interdot conductance g and the fractional peak splitting 

/ [51, 52, 53, 54]. In this approach, the Hamiltonian consists of three parts: the single- 

particle kinetic energies K, the capacitive charging energies Vtot, and the hopping term 

HT. For simplicity, the tunneling amplitudes between the dots are assumed independent 

of the particular tunneling channel, as is trivially the case for the two 5C/(2)-symmetric 

channels involved in the experiments described in Sec. 1.3. The three parts of the 

Hamiltonian then take the form 

2 

t'=l    fc,<7 

Vtot    =    ^-(Ntot-^tot)2 + Up(n-p/2)2, 

HT     =        J2   '*!**  (CkaClfc!<. + H.C.)   , (1.11) 

where i is the dot index, a is the channel index (which is equivalent to a spin index in 

recent Nch = 2 experiments), and & is a kinetic index which accounts for all electron 

degrees of freedom not included in the dot or channel indices. The number opera- 

tors Ntot = (ni + n2) and h = (n2 - hi)/2 are quantized versions of the occupation 

numbers JVtot and n. The single-particle energies eik<7 are assumed to be distributed 

relatively evenly with an average level spacing S in an energy band [e0, e0 + D]. For zero 

temperature and HT = 0, the single-particle states on either dot are presumed to be 

occupied up to the energy e0 + FD, where F is the filling fraction of the single-particle 

bands. The bandwidth D is assumed to be at least of the order of the Fermi energy £F; 

consequently, D > U<j>,Up > 6. 

Calculation of the interdot conductance g and the fractional peak splitting / is done 
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via perturbation in Rj and in the continuum limit S < U$,UP. Since coupling to the 

external leads is neglected, the term in Viot proportional to £/$ is simply constant and 

can be dropped, leaving us with the differential charging energy [51]: 

V = Up(n - p/2)2 . (1.12) 

To make calculation of g and / manageable, we will assume that tk1k2 
can be treated 

as independent of k\ and k^- The resulting model with /fcifc2 = * is roughly equivalent 

to a system of two planar lattices linked by a hopping element T between their origins 

(see Fig. 1.11)—i.e., to two lattices connected by the hopping term 

ffT = $>(4a«rCio1, + H.c), (1.i3) 
a 

where 0; is the origin of lattice i [51] and T = N\tt, with N\t ~ D/S being the number 

of sites on the lattice [51]. 

The assumption t^ki = * is valid under two conditions. The first is that the charging 

energy Up is much greater than the level spacing 6. The fact that Up > 6 does more 

than permit us to calculate summations over single-particle states via a continuum 

approximation. It implies that the positions of the Coulomb-blockade conductance 

peaks are not sensitive to the fluctuations in the tunneling probabilities proportional 

to l/fcjfcjl2. Instead, the Coulomb blockade is determined by the average behavior of 

a nonzero number of tunneling probabilities—i.e., by averages of |<jfcijt2|
2 over a finite 

number (presumably some fraction of U/S) of neighboring combinations of &i and fo. 

The second condition for taking t^ fc2 = / is that the device resolution £ is small 

enough to ensure that the transmission energy scale W exceeds Up. If this condition fails 

to hold, the averages of the tunneling probabilities will themselves change significantly 

over the energy range Up. 
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Figure 1.11: Two lattices coupled via a hopping channel between their origins. 
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1.4.2    Calculation of the Conductance and Peak Splitting 

Having emphasized the stipulation that 6 <C Up < W, we can proceed to the results 

for the dimensionless channel conductance g and the fractional peak splitting /. As 

discussed in Sec. 1.3.1, the experimental measurement of the channel conductance g 

corresponds to setting Up = 0 and finding the net flow of electrons from dot 1 to dot 2 

when the dots are held at different chemical potentials. One might worry about the fact 

that de-energizing the gates also alters the level spacing 6. However, this does not affect 

the result, as can be seen by referring to the coupled-lattice interpretation of our model 

(recall Eq. 1.13 and Fig. 1.11). In this picture, de-energizing the gates corresponds to 

increasing the number of sites in the lattices (JVu —*• N\t) while keeping T constant. It 

follows that this lattice expansion results in both the level spacing 6 and the tunneling 

amplitude t being multiplied by the factor N\t/Nit- Since g is a function only of the 

ratio t/6, the separate changes in t and 6 cancel and can be ignored. 

The result for g, which is calculated exactly to all orders in perturbation theory, is 

4x_ 

|1 + (1 + »?)2X| g=M  .„  ■..,,2vl2» (L14) 

where x = l^/^l2 and V = (l/7r)ln[ir/(l — F)] [51]. It is remarkable that, for all values 

of F, the maximal dimensionless conductance is 1. Still, the equation for g indicates 

that the weak-coupling model is not useful when t is on the order of or much greater 

than 6 since, in this regime, the interdot conductance in the hopping model is squeezed 

off by the formation of a bound state at the points where the lattices are linked. 

The fractional peak splitting / is computed by solving for the quantity fp, which 

has the definition 

^d(p) - EU*\ - E
9
UP) - EU°)_ 

f> = " uji L' (L15) 

where E9 A(p) is the ground-state energy of the double-dot system for the given values 

of g and p and for an even total double-dot occupation iVtot- In terms of AT(/O), the 
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ground-state energy shift induced by HT, 

h- VjA ■ (1.16) 

After determining that Ar(l) is the same, except for corrections of order S/D, as the 

ground-state shift of the system for JVtot odd and p = 0 (see Chapter 2), one arrives at 

an equation for the fractional peak splitting: 

/=lim/p. (1.17) 

1.4.3    Peak Splitting Expanded in the Conductance 

Calculating via Rayleigh-Schrödinger perturbation theory to leading order in S/D, one 

finds that fp can be expressed as a power series in x = (xt/8)2. In Chapters 2 and 3, 

the terms in this power series are computed up to order x2- After inverting Eq. 1.14, 

one obtains an expansion of fp in powers of g [52]: 

oo      n 

/p = EE amn(p) (Nch)m gn. (1.18) 
n=l m=l 

From Chapters 2 and 3, we know the coefficients amn(p) for n < 2. The resulting 

equation for the fractional peak splitting is 

/ ~ O.14O4JVch0 + O.imN^g2 - 0.009798(^)2g2 + ... (1.19) 

The weak-coupling result for iVch = 2 is plotted in Fig. 1.10 and is seen to give good 

agreement with the experimental data. The key qualitative aspects of the /-versus-p 

curve for such small values of Nch are that, for g ~ 0, it has a relatively small slope and 

an upward curvature. For Nch > 10, the /-versus-^ curve looks significantly different, 

possessing a large upward slope and a downward curvature. 
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1.5    Theoretical Results for Strongly Coupled Dots 

1.5.1    Effective One-Dimensionality of the Planar Dots 

Though the weak-coupling results give a good qualitative sense of the /-versus-^ curve, 

they are only expected to be quantitatively accurate for g <C 1- To understand the 

behavior at and about the strong-coupling endpoint (g,f) = (1,1), we will need a 

different model that is independent of p for g = 1 and perturbative in (1 — g) instead of 

9- 

If the saddle region between the two dots is approximately adiabatic—i.e., if there 

is only negligible scattering between the transverse modes within the saddle—such a 

strong-coupling model can be obtained through the observation that the two-dot prob- 

lem is effectively one-dimensional [33, 34]. If we presume that the entire double-dot 

system were adiabatic, with a well-defined separation of the transverse and longitudinal 

motions throughout, it follows immediately that the two-dot system consists simply of a 

number Nc^ of separate one-dimensional tunneling channels that interact only through 

the capacitive charging energies of the dots. Electrons in transverse modes that do not 

penetrate the barrier region can be ignored as they simply sit inertly on one dot or the 

other. 

What might be a bit surprising is that more realistic systems, in which adiabaticity 

does not hold outside the saddle, are still effectively one-dimensional. In such systems, 

the average energy spacing in the one-dimensional channels is the same as that of the 

two-dimensional dots, but the probability of an electron actually being in the saddle 

is weighted by the proportion of overlap between the electronic wavefunction and the 

relevant transverse mode. The combination of this wavefunction weighting with the 

two-dimensional level spacing yields an average overall normalization that is indistin- 

guishable from a fully adiabatic system with a one-dimensional level spacing in the 

channels [26].   Of course, the wavefunction weights vary randomly for individual dot 
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eigenstates, and it is important to have Up > S so that the weights are averaged over a 

large number of single-particle eigenstates. 

1.5.2    ID Fermionic Model and the Interdot Conductance 

We can now proceed with a one-dimensional model for the coupled-dot system. Since 

we are currently concerned with the strong-coupling (g -► 1) limit of such a model, the 

particles in our one-dimensional system propagate nearly freely between the two dots. 

As a result, in the connecting region itself, we are primarily confronted with particles 

that can be characterized as mostly right movers or mostly left movers—i.e., particles 

that can be characterized as essentially going from dot 1 to dot 2, with a small amount 

of backscattering, or from dot 2 to dot 1, again with only little backscattering. Instead 

of indexing particles by the dots with which they are associated, we therefore index 

them by the directionality index j, where j = 1 for right movers and j = 2 for left 

movers. The channel index a and the supplementary index k that were used in the 

weak-coupling limit remain serviceable. 

The one-dimensional Hamiltonian is the following: 

2 

K = 5ZE&ffÄi*" 
3=1  k,a 

V   =   Up{h-p/2)\ 

HB    =     5Z  ^fc2(4fc2(Tclfclcr + H.c.), (1.20) 

where fa is the kinetic energy of a particle in the ath channel with kinetic index k. 

The Hamiltonian once again consists of three parts, but the perturbative term represents 

backscattering from the interdot barrier rather than tunneling through it. 

Just as we assumed that tklk2 could be considered constant in the weak-coupling 

limit, we now assume that we can replace vklk2 by the constant v, the assumption again 

being that W < Up. The backscattering term HB then represents the backscattering 

from a delta-function potential V06(x), and the relation between the magnitude of this 
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potential and the conductance through the barrier is given by [51, 52] 

(1-9) = V2 + 0[V4], (1.21) 

where V = Vo/hvp, vp being the Fermi velocity. 

1.5.3    Bosonized Euclidean Action and Strong-Coupling Endpoint 

In order to find the /9-dependence of the ground-state energy, we will use the bosonization 

formalism, in which the low-energy degrees of freedom of a one-dimensional system 

of fermions are expressed in terms of bosonic density and phase operators [55, 56, 

57, 58, 59, 60, 61, 62, 63]. The bosonized Euclidean action consists of the following 

parts [33, 34, 51, 52]: 

So = ^Ewi«2' 

Sint     —     Up 

ß 
"in 

ß 
AT   I 

\ 2 

M* £*'00 p/2 

SB    =    17 Z)/ *" cos [2V^ff(r)] , (1.22) 

where D is the bandwidth, ß is the inverse temperature (ß = 1/kßT), and the energies 

um are h times the Matsubara frequencies (wm = 2irm/ß with m an integer). The 

bosonic field 6a{r) measures the number of electrons in the a channel that lie to one 

side of the barrier. 0(u)m) is its Fourier transform: 

The first step in handling the action of Eq. 1.22 is to shift all the ^(r) fields by 

a constant: 9C(T) —► 0a{r) + p/2Nch- This moves all the p-dependence of the action 

from the capacitive charging term V to the backscattering term HB- Hence, it makes 

clear that the action is independent of p when the backscattering parameter V is zero— 

i.e., when g — 1. The bosonized action therefore yields the desired endpoint for the 

/-versus-^ curve: (g,f) = (1,1). 
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1.5.4    Peak Splitting near the Strong-Coupling Endpoint 

What about the behavior in the vicinity of the g = 1 endpoint? To find this we solve 

for the ground-state energy via perturbation in SB- Once again, we look to find the 

quantity fp, which is now formulated in terms of the ground-state energy shifts AB(p) 

induced by backscattering between the dots: 

f~        2     AB(/>)-AB(0) 
p ~ Wfl " (L24) 

It is clear from Eq. 1.24 that the fractional peak splitting / equals 1 minus nontrivial 

terms that go to zero when (1 - g) goes to zero. However, in contrast to the weak- 

coupling limit, in which we are able to solve for the leading terms in g for any number 

of tunneling channels, in the strong-coupling limit we can—at the present time—only 

use the bosonized Euclidean action to compute the leading nontrivial terms for N& = 1 

and Nch = 2. For N& > 2, there are qualitative arguments that the leading nontrivial 

dependence goes as (1 - g)N*/* [33, 52], but, as we shall see shortly, in the case of 

Nch - 2 the leading nontrivial term goes as (l-g)hi(l-g), and therefore the (l-g)N^/2 

proposition is at the very least susceptible to logarithmic corrections. 

In any case, the leading nontrivial terms for N& = 1 and N& = 2 are derived in 

Chapters 2 and 3 of this thesis. For N& = 1, the result is [51, 53, 54] 

/^l-^VW, (1.25) 

where 7 ~ 0.577 is the Euler-Mascheroni constant. For the experimentally relevant case 

of iVch = 2, the result is [52] 

16e7 

f-1+ -^ri1 ~ 9) Ml -g)- 0.425(1 - g), (1.26) 

which is plotted in Fig. 1.10. The Nch = 1 and Nch = 2 results show an even more 

dramatic dependence on Nch than the results for weak coupling. Also notable is that, 

whereas the weak-coupling calculation leads to an analytic expansion in powers of g, the 

strong-coupling calculation leads to terms that are singular at (1 - g) = 0, an outcome 
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that is not entirely shocking given that the infinite g = 1 one-dimensional system is 

translationally invariant but the infinite g < 1 system is not. 

1.5.5 Concerning Coefficients 

Readers possessing some familiarity with the perils of bosonization might worry about 

whether the coefficients in Eqs. 1.25 and 1.26 are well-determined [51]. Bosonization 

is most often used to derive scaling relations for which such coefficients are irrelevant. 

Moreover, closer inspection of the coefficients reveals that each one consists of at least 

two factors that separately depend upon the manner in which the high-energy bosonic 

degrees of freedom are cut off. Fortunately, as shown in Chapter 3, if corrections of 

order Up/D are neglected, the coefficients appear to be independent of the nature of 

the ultraviolet cutoff [52]. Hence, it is reasonable to suppose that they are indeed 

well-defined. 

1.5.6 Connection to the Weak-Coupling Results 

With the leading terms of /-versus-^ known for both the weak and strong-coupling 

limits, the curves that interpolate between these limits are relatively tightly constrained. 

A plausible interpolating curve that analytically approaches the limiting behaviors for 

iVch = 2 is displayed as a dashed line in Fig. 1.10. The curve shows remarkably good 

agreement with the most recent experimental data [46]. 
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1.6    Finite-Barrier Model for Weakly Coupled Dots 

1.6.1 Why Bother? 

In the preceding sections, it has been shown that credible results are obtained by working 

in what might be characterized as the universal limit Up/W = 0 in which / can be 

expressed in terms of JVch, g, and various universal coefficients. Having achieved so 

much by assuming constant tunneling and backscattering amplitudes, one might wonder 

what could motivate us to construct a model in which the amplitudes are variable. The 

first reason for considering a realistic Up/W ^ 0 system is that we want more than a 

hand-waving justification for the approximation Up/W = 0. Second, we want a more 

precise idea of when this approximation is valid. Third, we would like to possess a 

better understanding of the behavior of systems in which £ is considerably larger than 

AF and for which it is presumably not reasonable to take Up/W = 0. Finally, we hope 

that, with improved experimental precision, the non-universal corrections that result 

from Up/W ^ 0 will become detectable even in systems where £ is nominally small. 

1.6.2 Semi-Localized Basis and Parabolic Barrier 

In looking for these corrections, we consider the weak-coupling limit only. As in our 

earlier strong-coupling analysis, a crucial trick comes from the fact that the coupled-dot 

system is effectively one-dimensional. A second trick consists of choosing a particular 

basis of states that is formed from simple linear combinations of the exact single-particle 

eigenstates of the full double dot. The states in this basis are semi-localized: they have 

some tendency to be concentrated on one dot or the other, particularly at low energies, 

but they extend throughout the double dot. As a result, the operator n is not diagonal 

in this basis, and the perturbative quantity is n - n0, where n0 is the number operator 

that counts the difference between the occupation of semi-localized states preferentially 

associated with dot 2 and that of semi-localized states preferentially associated with 
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dot 1. 

To obtain a quantitative result with such a semi-localized basis, one must assume 

some concrete form for the self-consistent barrier between the dots. Given the relatively 

smooth nature of the electrostatic potentials, it is reasonable to model the barrier as 

parabolic, being given by the equation V(x) = Vmax(l — x2/2£2) for \x\ < \/2£, where £ 

is the device resolution. The barrier is then an inverted parabolic well with an associated 

harmonic oscillator frequency u = \/Vma.x/m£2. The differential conductance through 

such a barrier has been known since at least the mid-1980s: 

9 =   1 + e-27r(£P-Vmax)/ßu. • (ll27) 

It follows that the characteristic transmission energy scale is given by 

W = £. (1.28) 

For nontrivial values of g (i.e., for g a reasonably sized, finite distance from both 0 

and 1), we must have Ep ~ V^ax- We then conclude that W ~ hvF/2ir\/2£ [26]. As 

expected, W depends inversely on the characteristic length £. 

1.6.3    Peak Splitting as a Non-Universal Function of Conductance 

Calculation of the fractional peak splitting / is, as usual, a bit more difficult than 

calculation of g. In Chapter 4, we see that, for Up/W ^ 0 and g <C 1, / is raised 

above its Up/W — 0 value by an amount that is, at leading order, proportional to 

Up/W — 2irUp/huj [26]. In the extreme g —> 0 limit, the dependence of / on g is 

expected to be quite different from that for Up/W = 0: the curve is concave and goes 

as (2TrUp/hu))(l/\hig\). The explanation for such behavior is that, for very small g, 

the well-localized occupied states that lie at and below the Fermi energy couple only 

weakly to similarly well-localized states but couple comparatively strongly to the mostly 

transmitting states that lie above the barrier. The penalty for coupling to these states 
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is the relatively large energy difference between them, which, from Eq. 1.27, is of order 

(ßa;/27r)|lnP|. 

Though we do not calculate the correction to the 2wUp/hu> = 0 behavior in the 

strong-coupling (g ~ 1) limit, we can surmise that the drop in the transmission proba- 

bility as one goes to lower and lower energies below the Fermi surface probably means 

that the 2wUp/hu ^ 0 corrections will bring about a decrease in the fractional peak 

splitting relative to that for 2irUp/hu = 0. 

Figure 1.10 displays the small-ß part of the NA = 2 curve for 2irUp/hu = 1, which is 

the value for 2irUp/hw that appears to correspond to recent experiments (see Chapter 4 

for details). In this case, the 2TTUP/}UJ ^ 0 corrections are relatively small in magnitude. 

Thus, the interpolating curve does not have to be significantly modified to account for 

them, and the experiments can indeed be characterized as being, for the most part, in 

a large W or small £ limit. For larger values of £, this need not be the case. 
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1.7    Summary and Preview 

This chapter has introduced both the general physics of quantum dots and the specific 

physics of the Coulomb blockade. It has also provided an overview of the theoretical re- 

sults and calculations of the chapters that follow. Section 1.1 delved into the particulars 

of the definition of quantum dots, describing in detail the large planar quantum dots with 

which we are primarily concerned. Section 1.2 reviewed the Coulomb blockade and the 

orthodox model that does much to explain it. Section 1.3 described recent experiments 

with symmetric coupled dots in which peak splitting was seen to be correlated with the 
t 

conductance Gb through the interdot barrier. It also introduced the essential program 

of this thesis, which is to develop realistic quantum mechanical models that give the 

relation between the fractional peak splitting f and the dimensionless channel conduc- 

tance g for various values of the number of tunneling channels, N&. Sections 1.4-1.6 

presented three such models for the regimes of weak coupling (g ~ 0), strong coupling 

(<jr ~ 1), and weak coupling in the presence of a finite barrier (g ~ 0 with Up/W ^ 0), 

respectively. 

The punchline of this chapter is that, in order to describe the transformation of the 

Coulomb blockade of two isolated dots into the blockade of one large composite dot, one 

must move beyond the classical physics of the orthodox model and adopt an approach 

that takes account of quantum mechanical tunneling. In practice, one has to come 

up with at least two such approaches—one for weak coupling that is perturbative in g 

about (fif,/) = (0,0) and one for strong coupling that is perturbative in (1 — g) about 

{.9 if) = (1? !)• Sections 1.4 and 1.5 presented the transfer-Hamiltonian model for weak 

coupling and the one-dimensional backscattering model for strong coupling that form 

the backbone of Chapters 2 and 3 of this thesis. Chapter 2 gives the leading results 

derived from these models; subleading terms are calculated in Chapter 3. 

In Chapter 4, the third model for the double dot is introduced. It goes beyond the 

search for the curve /(iVch, g) by taking into consideration the non-universal quantity 
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Up/W, which is the ratio of the charging energy Up and the characteristic transmission 

energy scale W. It concludes that the corrections due to nonzero Up/W are potentially 

measurable and significant but that, within the range of current experimental precision, 

the iVch = 2 interpolating curve determined by the universal U„/W = 0 results is 

fundamentally serviceable over the bulk of the domain of g. 

The reader should be warned that there exist small but possibly nettlesome differ- 

ences between the notational schemes of the various chapters, each of which is essentially 

a self-contained essay. For example, Chapters 2 and 3 use Ux and U2 where this chapter 

uses 2£/<j> and Up. Chapter 4 uses U for Up. 
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Chapter 2 

Leading Results for the 

Coupled-Dot Blockade 

2.1    Introduction 

Turning on a tunnel junction between a bulk lead and a quantum dot leads to progressive 

destruction of the single-dot Coulomb blockade [8,13,14,15]. Experiments by Waugh et 

al. [19, 43, 44] and Molenkamp, Flensberg, and Kemerink [48] chronicle this eradication 

for two tunnel-coupled dots of equal and widely disparate charging energies, respectively. 

Inspired by the experimental results of Waugh et al, the present chapter seeks to develop 

a simple model for the coherent tunneling of electrons between a pair of electrostatically 

identical quantum dots [see Fig. 2.1(a)]. The goal is to describe the evolution of the 

Coulomb blockade from that of two isolated dots to that of one composite dot in terms 

of parameters that determine the states of the isolated dots and the nature of the 

connection between them. In the limits relevant to the experimental situation, we find 

that the most important dimensionless parameters are the number Nch of conducting 

channels between the two dots and the dimensionless interdot barrier conductance g 

of each channel, which is measured when the Coulomb blockade has been removed. 
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(Waugh et al. [19, 43, 44] measure the conductance through the interdot barrier by 

de-energizing the external potentials Vxi that separate the dots from the leads. This 

conductance is to be distinguished from the conductance measured in the double-dot 

Coulomb blockade measurements, which might be referred to as the Coulomb blockade 

conductance or double-dot conductance.) 

The problem of coupled quantum dots and more generally, of the effect of tunnel- 

couplings upon the Coulomb blockade has received much attention. Ruzin et al. [47] 

examined the Coulomb blockade structure of two non-identical dots in series via a stan- 

dard activation-energy approach. Stafford and Das Sarma [64, 65] as well as Klimeck, 

Chen, and Datta [66] have applied Hubbard-like models with and without interdot ca- 

pacitances to determine the many-body wavefunctions for tunnel-coupling between a 

small array of single-dot eigenstates. Many investigators have studied the effect of tun- 

neling upon the Coulomb blockade for metallic junctions, in which there are a large 

number of conducting channels [67, 68, 69, 70, 71, 72]. Relatively few have considered 

junctions with only one or two channels [33, 73, 74]. Furthermore, the work on one or 

two-channel junctions has been restricted to consideration of a single dot coupled to 

bulk leads rather than systems of coupled dots. A significant finding of this chapter is 

that by introducing a "fictional" difference between the gate voltages on the individual 

dots, one can map the two-dot problem onto the one-dot problem and adapt previously 

obtained results for strong interdot coupling between a single dot and a bulk lead. 

In Sec. 2.2, we present a brief review of the experimental results that have moti- 

vated our investigation. In Sec. 2.3.1, we define a tunneling model which is useful for 

calculations in the limit of weak coupling between the two dots. In Sec. 2.3.2, we show 

how a "center-of-mass transformation" allows one to map the two-dot problem onto 

the one-dot problem. Section 2.4 presents the weak-coupling results for our theory, and 

Section 2.5 gives the strong-coupling results and offers plots of the data and theory for 

one and two-channel junctions. A summary of our findings is provided in Sec. 2.6. 
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Figure 2.1: (a) Schematic diagram for the double dot. Negative potentials are applied 
to each of the gates to form the double-dot structure. The gate potentials Vgi and 
Vgi control the average numbers of electrons on the dots. These are the potentials 
that are varied to see the Coulomb blockade. Vb controls the rate of tunneling between 
the dots. Vxl and Vx2 control the rate of tunneling to the adjacent bulk 2D electron 
gas (2DEG) leads. For calculations of the double-dot energy shifts, tunneling to the 
leads is assumed negligible compared to tunneling between the two dots. In measuring 
the barrier conductance G&, however, the potentials Vxi are turned off so that each 
dot is strongly connected to its lead. The side-wall potentials Vsl and Vs2 are fixed, 
(b) Schematic diagram for the single dot. Vb now controls tunneling between the dot 
and the bulk 2DEG. Vg determines the average number of electrons on the dot. For our 
purposes, Va and Vx are constant, and tunneling to the bulk 2DEG through the barrier 
defined by Vx is negligible compared to tunneling through the barrier defined by Vb. 
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2.2    Motivation 

The experiment of F. R. Waugh et al. [19, 43, 44] provides the primary motivation for 

this chapter. These authors study the effect that varying the interdot potential barriers 

has upon the Coulomb blockade conductance peak structure for arrays of n dots, where 

n equals 2 or 3. For their Coulomb blockade measurements, they energize the confining 

gates [Vxi in Fig. 2.1(a)] so that the conductance between the dots and the external leads 

is much less than 2e2/h. Having tuned the dots to be electrostatically identical—i.e., 

to have common gate and total dot capacitances Cg and Cs—they find that lowering 

the interdot barriers results in interpolation between the peak structure characteristic 

of the isolated individual dots and that characteristic of a single composite dot having 

capacitance nC^: the initial isolated-dot peaks split into bunches of n sub-peaks, and 

the splitting within the bunched sub-peaks increases until they are essentially equally 

distributed with n-times the periodicity of the original peaks [see Figs. 2.2(b) and 2.2(c)]. 

For the double dot (n = 2), Waugh et al. also measure the conductance Gb of the barrier 

between the two dots after the exterior walls of the double dot have been removed and 

remark that plots of the sub-peak splitting and barrier conductance as functions of the 

barrier gate voltage appear substantially similar. 

Waugh et al. use a T = 0 "capacitive charging model" to interpret their data. In 

this model, electrons on the dots are treated as charged particles with no kinetic energy 

that occupy each dot in integer amounts. In the absence of coupling, the energy is given 

by the sum of the potential energies of the individual dots. For two dots with common 

capacitances Cs and Cg, the expression for the energy has an especially simple form: 

2 

2 

£=4E^--^)2' (2-I} 

i=l 

where U is the charging energy for each individual dot, U = e2/Cs; ft; is the number 

of electrons on the ith dot; and <fo is the gate voltage parameter that determines the 

energy-minimizing value of n,-. For common gate voltages and gate-to-dot capacitances, 
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we have the relations fa = CgiVgi/e = CgVg/e = <f>. Figure 2.1(a) should help put these 

parameters in context. 

For each set of integer occupation numbers (»11,7*2), the capacitive charging model 

with 4>i — <t> gives an energy E(niiTl2) that is a parabolic function of the common gate 

voltage parameter <f> (see Fig. 2.2). All the parabolas are identical In shape, their only 

distinguishing features being the locations of their minima. The lowest-energy parabola 

Efftot{4>) f°r a given value of Ntot = ]C»Li ni nas T*I = TI2 = Ntot/2 for Ntot even and 

«i = »2 ± 1 = (Ntot ± l)/2 for Ntot odd. In the former even case, the minima all lie on 

the line E = 0. In the latter odd case, the minima are displaced upward, sitting along 

E = U/4. For all parabolas, the «^-coordinate of the minimum is JVt(rt/2. 

A prominent peak in the double-dot conductance occurs at values of <f> such that 

the lowest-energy parabolas corresponding to consecutive values of Ntot cross—in other 

words, at values of <j> for which Efjtot(<f>) = EN,ot+i(4>) f°r some integer Ntot. For the 

model of Eq. 2.1, this occurs whenever (j> = m + 1/2, where m is an integer. (One such 

crossing point is marked by the black dot in Fig. 2.2.) 

In a model in which coupling between the dots is included, the lowest-energy parabo- 

las for odd Ntot are shifted downward relative to the lowest-energy even-iV~iot parabolas 

by an "interaction energy" E{nt. This downward shift splits each of the initial cross- 

ing points into a pair of crossing points symmetric about the position of the initial 

degeneracy, from which they are separated by a distance proportional to E{nt. As a 

result, each of the initial conductance peaks is similarly split into two sub-peaks with 

separation proportional to E{nt. The sub-peak splitting reaches its saturation value 

when Eint = U/4—i.e., when the lowest-energy even and odd parabolas have the same 

minimum energy. At this point, the relevant crossing points occur for <j) — \(m + \). 

The corresponding conductance peaks are once again equally spaced, but their period 

is now that characteristic of a single dot with capacitance 2CE. 

Thus, in the capacitive charging model, the problem of explaining the peak splitting 
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Gate Voltage 

Figure 2.2: (a) Energy curves in the capacitive charging model for electrostatically 
identical dots with Vgl = Vg2 and zero interdot capacitance. Energies are given in units 
of the charging energy U; the gate voltage is given in units of e/Cg. Each zero-coupling 
eigenstate with definite particle number nt- on the ith dot gives rise to a parabola, 
labeled (ni,n2), which shows the state's energy as a function of the gate voltage. The 
zero of energy is chosen to coincide with the lowest energy possible for states with an 
even value for the total number of particles Ntot. The solid odd-JVioi parabola gives the 
lowest-energy curve only when there is no interdot coupling. The dotted parabola is 
the shifted-down energy curve for odd Ntot that results from finite coupling between the 
dots. The relevant degeneracy points are indicated by a black dot for zero coupling and 
white dots for finite coupling, (b) "Zero-coupling" conductance through the double dot 
as a function of the gate voltage. (For ease of viewing, peaks are depicted as symmetric 
with uniform finite widths and heights.) Conductance peaks are aligned with the zero- 
coupling degeneracy points such as the one shown in (a) and occur regularly with unit 
period, (c) Conductance through the dot for finite interdot coupling. Conductance 
peaks are aligned with the perturbed degeneracy points. Each zero-coupling peak has 
split into two separate peaks, equally distant from the zero-coupling peak position. 
Increasing the interdot coupling increases the separation between the paired peaks until 
the full set of peaks is again regularly distributed, with half the original period. (This 
figure for the capacitive charging model follows that of Waugh et al. [19, 43, 44].) 
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reduces to the problem of describing the shift in the ground state energy of a double 

dot containing a fixed total number of particles. Waugh [19, 43, 44] has shown that 

introduction of a capacitive coupling C,nt between the two dots would allow one to 

obtain a picture in qualitative agreement with the experimental results: as the interdot 

capacitance goes to infinity, E{nt converges to U/4. However, the magnitude of the 

interdot coupling necessary to fit the experimental data is much larger than what one 

would expect from an electrostatic interaction between two adjacent dots having a 

narrow tunneling channel between them. Waugh found that in order to bring about the 

saturation peak splitting, the interdot capacitance would have to grow from its zero- 

tunneling value by approximately a factor of 250, to a magnitude ten times larger than 

the single-dot capacitances at zero tunneling [19, 43, 44]. If one were to model the two 

dots as coplanar sheets of charge being moved closer together as the interdot channel 

conductance g is increased—essentially a best case scenario for those wishing to induce 

large interdot capacitances—the intercapacitance would depend only logarithmically on 

the separation, and the distance between the dots would have to be decreased to much 

less than an interatomic length to effect the required growth. 

Consequently, the use of a large interdot capacitance C,nt must be regarded as 

simply a reparametrization of the problem which replaces one unknown, Eint, with 

another unknown, Cint- What we really want is a theory which produces agreement 

with experiment and expresses Eint in terms of simple measurable quantities. Waugh et 

al. provide one candidate: the conductance Gb of the barrier between the two dots. The 

remainder of this chapter is devoted to developing a theory of the relation between E{nt 

and the dimensionless conductance per tunneling channel g = Gb/NchGo, where Nch 

is the number of independent interdot tunneling channels (assumed to have identical 

conductances) and Go is the conductance quantum e2/h. In the experiments of Waugh 

et al. [19, 43, 44], there is no applied magnetic field and the dots are connected by 

a narrow constriction allowing only a single transverse orbital mode with double spin 
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degeneracy. As a result, in this experimental case, Nch equals 2. 

2.3    Tunneling Model for the Double-Dot Coupling 

2.3.1    Definition of the Model 

Our goal can be stated a bit more precisely. For a general tunnel-coupling between two 

dots involving any number Nch of identical, independent channels and dimensionless 

channel conductance g, our aim is to express the fractional energy shift / = 4Eint/U as 

a function of g and Nch plus any other parameters that might be found to be important. 

In order to derive an equation for /, we first choose a double-dot Hamiltonian. We 

will ignore electrostatic coupling of the dots for the moment: it will be noted at the 

beginning of Part B of this section that the presence of an interdot capacitance makes no 

substantive difference for our analysis. Interaction between the dots will occur solely via 

tunneling through the barrier between them. Such tunnel Hamiltonians have been found 

useful from the beginnings of Coulomb blockade theory [75], and the model we will use 

is a double-dot version of the Hamiltonian used, for example, by Averin and Likharev 

to investigate the conductance oscillations of small metal-to-metal tunnel junctions [76]. 

In particular, we have the Hamiltonian H = H0 + HT, where 

Ho   =   K + V, 
2 

K = 5Z 2 ]L €ik° "**' 
v = fx>-<k)2, 

1=1 

HT   =   ££(*kikAa«rCik1(y + H.c.). (2.2) 
"   kik2 

In these equations, i is the dot index, a is the channel index (which could signify different 

spin channels), and k is the index for all internal degrees of freedom not included in 

the channel index. In addition, &,• = £k<r »W is the number operator for the ith dot, 
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and ik!k2 
1S the tunneling matrix element between a dot 1 wavefunction indexed by ki 

and the dot 2 wavefunction lying in the same channel and indexed by lc2- The gate 

voltage parameter </>, has the same meaning as in Eq. 2.1. e,k<r is the kinetic energy of 

the single-particle eigenstate of the ith dot having the indicated degrees of freedom. For 

simplicity, we will take these energies to be independent of dot and channel: e,k<r = ejj. 

The next step in focusing upon a model Hamiltonian is to choose a form for t^t k2. 

Quite generally, t^ k2 will be nonzero only when both ki and hi he within some wavevec- 

tor shell that maximally spans the space between the theory's low and high momentum 

cut-offs. The size of the wavevector shell depends on details of the barrier—in partic- 

ular, the characteristic lengths of the channel both parallel and perpendicular to the 

voltage wall between the dots. If the barrier has an abrupt delta-function shape, the 

tunneling wavevector shell will span all of reciprocal space. If, on the other hand, the 

channel evolves adiabatically from the dots, the shell width will be small on the scale of 

a Fermi wavevector. Important questions are how many states lie within this shell—i.e., 

how large is the width W of the corresponding energy shell compared to the average 

level spacing 8 between different states in the same channel (hereafter referred to as 

"the average level spacing" or just "the level spacing")—and for a given ki, for how 

many k2 is t^^ nonzero. Thin-shell models with "one-to-one" hopping elements (i.e., 

for which ikik2 = 0 unless ki = k2) have been applied to the coupled dot problem with 

some success,5-7 especially for level spacings 8 which are on the order of the charging 

energy U. For the nearly micron-sized dots used by Waugh et al, however, U is ap- 

proximately 400 peV and 8 is on the order of 30 fieV [19, 43, 44], so we expect that a 

tunnel-coupling sufficient to destroy the isolated-dot Coulomb blockade will involve a 

large number of single-dot eigenstates. Indeed, as it does appear that the characteristic 

size of the channel approximates a Fermi wavelength (40 nm) [77], it is reasonable to 

suppose that the wavevector shell width is on the order of a Fermi wavevector and, 

therefore, that the energy shell width W is comparable to the Fermi energy (13 meV), 
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which is much larger than U. 

Consequently, assuming an abrupt tunnel barrier, we consider a thick-shell model 

that is the antithesis of the injective thin-shell model. Working in a regime where 

W > U > 6, we use a tunneling matrix element t that is independent of kx and k2 

within the shell: 

*kik2 =t Vki, k2 such that e0 < ekl, ekz < e0 + W. 

As the quantities we calculate are independent of the phase of /, we guiltlessly choose t 

to be real. This model is roughly equivalent to one in which each dot is represented by 

a tight-binding lattice with intersite hopping elements of order W/6 and where inter- 

dot tunneling occurs via a tunneling Hamiltonian with a single site-to-site connection. 

Choosing these tunneling sites to be at the origins Oi and 02 of the respective lattices, 

we may write 

HT = J2(Tcio2^ma + H.c), 
a 

where T = Nwt and Nw = W/6 is the number of orbital states per channel in each 

dot within the bandwidth W. (The equivalent lattice model should include second and 

further neighbor hopping so that the density of states is approximately constant between 

e0 and c0 + W. The lattice constant is chosen by requiring that the product of Nw and 

the area of a unit cell equals the area of a single dot.) 

As the Fermi energy eF must be somewhere between e0 and e0 + W, the meaning 

of €Q depends on the width of the band. For a maximally thick shell, c0 lies at the 

bottom of the conduction band, and W is an ultraviolet cut-off, which is chosen to be 

of order twice the Fermi energy. Alternatively, when the barrier between the dots has a 

broader spatial extent, the energy shell sits more narrowly about the Fermi energy, and 

the width W is on the order of the energy difference needed to produce a factor-of-two 

change in the magnitude of the transmission amplitude for an incident particle.   We 
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define a dimensionless filling parameter 

which gives the position of the Fermi level within the bandwidth W. Provided that 

(1 - F)W and FW are both large compared to U, our final results should be indepen- 

dent of the precise values of W or F. 

2.3.2    Map between the Double- and Single-Dot Systems 

The model we have constructed is basically the two-dot version of that used by L. I. 

Glazman and K. A. Matveev [73] and by H. Grabert [72] to study the charge fluctua- 

tions of a single conducting island connected via point-tunnel junctions to conducting 

leads [see Fig. 2.1(b)]. Indeed, by using an analog of the standard center-of-mass trans- 

formation of classical mechanics and fixing the total number of particles in the two-dot 

system, we can create an exact mapping between the two-dot and one-dot problems. 

Consider again the double-dot potential energy V. By transforming to the analog of 

center-of-mass coordinates, one generates the following form: 

V = ^(Ntot - $tot)
2 + U2(n - p/2)2, (2.3) 

where Ntot = £?=1 hi, $iof = £?=1 fc, h = (h2 - ni)/2, p = <j>2 - fa, and Ux = U2 = 

U = e2/Cs when the interdot capacitance is zero. The rationale for the normalizations 

for h and p will soon be made apparent. In the meantime, note that for our Hamiltonian, 

Ntot is a constant of motion. Thus, for given Ntot, §tot, and U\, we can drop the first 

term and insert in the Hamiltonian a reduced potential energy: 

Vred = U2(n - p/2)2. (2.4) 

The impact of a nonzero interdot capacitance can now be trivially included: its only 

effect is to decrease the value of U2. 
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In particular, in unpublished work [49], C. H. Crouch and J. M. Golden have found 

that if Cs is defined to be the total capacitance for a single dot minus the interdot 

capacitance, introduction of a constant interdot capacitance dnt decreases U2 from 

e2/CE to e2/(CE + 2Cint). The equality Ux = U = e2/CE is left unchanged. For a 

given value of the conductance parameter g, if / is the fractional peak splitting in the 

model with zero capacitive coupling between the dots, then the fractional splitting /' 

for a system with an interdot capacitance is simply related to / by the equation 

(1 - /') = ^(1 - /). (2.5) 

Capacitive coupling between the dots thus leads to a nonzero splitting (/' ^ 0) even 

when there is no tunneling between the dots (/ = g = 0). 

We can now return to Eqs. 2.3 and 2.3. Restrict Ntot to be even. Then, n has integer 

expectation values in all the unperturbed double-dot eigenstates. With the total number 

of particles in the two dots held constant and even, the Hamiltonian is exactly that of 

a single dot tunnel-coupled to an ideal lead. The dot has number operator fi, charging 

energy 2U2, and gate voltage parameter p/2. In the absence of tunneling and with the 

level spacing in both dots much less than U2, the ground state is an eigenstate of h that 

minimizes the reduced potential energy, which in the future we consider equivalent to 

"the potential energy." For p = 0, the minimum potential energy is zero and is achieved 

when the eigenvalue n of n is zero—i.e., when there are equal numbers of particles in the 

two dots. All other values of n give higher potential energies. For p = 1, on the other 

hand, the minimum potential energy is U2/4, and n = 0 and n = 1 give degenerate 

minima. 

These no-tunneling distinctions between zero and U2/4 and between nondegeneracy 

and double degeneracy are quite familiar: they characterized the even and odd double- 

dot ground states (p = 0 for both) discussed in Sec. 2.2. Indeed, what we called the 

"even double-dot ground state" is precisely the "Ntot even, p = 0 ground state." The 

"odd double-dot ground state" is not exactly the same as the uNtot even, p = 1 ground 
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state"; there is no getting around the fact that one case has one more (or less) particle 

than the other. However, in terms of their ground state energies, the difference between 

the two will be down by a factor of FNw or (1 - F)Nw- For a wide shell somewhere in 

the vicinity of half-filling, both FNw and (1 - F)Nw are much greater than one, and 

the above difference is negligible. Calculation of Eint with 4>i = <fo for the double dot 

is therefore equivalent to calculating the relative shifts of the p = 0 and p = 1 ground 

states of a single dot tunnel-coupled to a bulk two-dimensional electron gas. Having 

arrived at this conclusion, we will find that we have made much easier the job of solving 

Waugh's two-dot problem in the strong coupling regime: we can now redirect earlier 

work on the one-dot problem to our purpose. 

More generally, we observe that we have created a model that extends beyond 

Waugh's experiment to circumstances where the two dots have different gate voltage 

parameters. Such situations can also be mapped to the one-dot problem. As the mini- 

mum potential energy is periodic in p with period two and is also even in p, the general 

solution is given by that for p in the interval [0,1]. For p in this interval, the difference in 

the ground-state energies of the double-dot system for even Ntot and odd Ntot is related 

to the difference in the ground-state energies of the single-dot system for gate voltage 

parameters p and 1 - p. The theory developed in this chapter permits calculation of the 

relative downward shift of the p ^ 0 ground state to the p = 0 ground state. Dividing by 

the zero-tunneling energy difference of the two ground states, we find that our emended 

aim is to calculate 

h = (§^jl) = *P(0, 
N*> u> Nw, F), (2.6) 

where 0 < p < 1, u = U2/W, Nw = W/6, and Eint{p) is the ground-state energy 

relative to the ground-state energy for p = 0. 
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2.4    Results in the Weak-Coupling Limit 

2.4.1    Barrier Conductance in the Weak-Coupling Limit 

Before we can derive our equation for fp in terms of g, we must find a formula for 

the barrier conductance. Measurement of the barrier conductance Gb with the exterior 

gates turned off can be modeled by calculating the tunnel junction conductance for 

Ui = U2 = 0. As mentioned before, we assume the different conducting channels to be 

identical yet independent—their individual conductances are the same and they do not 

interfere with one another. These assumptions are certainly reasonable for the two spin 

channels in the experiment. Using the Lippmann-Schwinger equation with HT inserted 

for the scattering potential [78], one can solve for the perturbed electron eigenfunctions. 

The Heisenberg equation of motion for hx can then be used to solve for the particle flow 

from dot 1 to dot 2 for a given voltage bias. Solving the resulting expression for the 

linear conductance gives the following equation for the dimensionless conductance per 

channel: 

-     Gb     -       4a 

9 ~ NchG0 ~ |l + x«|2' (2J) 

where a = (*T/W)2 = (zt/6)2 and X = [1 + £ln(iS0]2. This equation generalizes 

H. 0. Frota and K. Flensberg's result for half-filling (F = 0.5,x = 1), derived via a 

Green's function-Kubo formula approach [74]. It is reassuring to note that despite x's 

imaginary part for F ^ 0.5, the maximal dimensionless conductance is one for all filling 

fractions. 

The calculated conductance Gb exhibits rather curious behavior: it first rises to a 

maximum of NchG0 corresponding to Nch fully open channels and then falls asymptot- 

ically to zero as (T/W = t/8) -* oo. As Frota and Flensberg note [74], the asymptotic 

damping of the conductance results from the fact that formation of bonding and anti- 

bonding states at the tunnel junction makes the cost of passing through prohibitively 

high. The limit of (T/W = t/S) -*■ oo is in some sense unphysical: we do not expect 
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a point-to-point hopping coefficient T to significantly exceed the tunneling shell width; 

nor do we expect the tunneling matrix element t to be much greater than the average 

level spacing. Nevertheless, the apparent absence of any good reason to truncate the 

theory at a particular value of t indicates that the model is at best unwieldy in the limit 

of strong coupling. To get the correct limiting behavior for strong coupling, it is more 

convenient to use a different approach, suitable for perturbation about the g = 1 limit. 

This will be described in Sec. 2.5. 

2.4.2    Relative Energy Shift of Even and Odd States in the Weak- 

Coupling Limit 

In the meantime, the site-to-site tunneling model is still useful in the weak coupling 

regime. So we plod ahead, calculating via standard Rayleigh-Schrödinger perturbation 

theory the second order shift in the ground state energy for p ^ 0 minus that for p = 0. 

The p = 1 shift will be taken to equal the limit of the general 0 < p < 1 shift as 

p —> 1. It might be objected—correctly— that this limit fails properly to account for 

the degeneracy of the ground state at p = 1. Such a failing is pardonable, however, for 

the contributions that are left out are all smaller by a factor of FN\y or (1 — F)N\y 

from those which are retained. Since we assume that t/S is finite, F is of order |, and 

N\v is large, the omitted terms are negligible. 

For Nw > 1, the perturbation theory sums can be approximated as integrals. 

Observing that u = U2/W < 1, we divide the difference between the second order 

shifts by U2P2/4 to get the leading approximation to fp: 

fi1]  = Wck^(J-}[(i-p)Hi-p) 
+{l + p)\n(l + p) + 0(up2)}. (2.8) 

The second-order term indicates a significant feature of fp: it is even in p. This property 

has also been noted by H. Grabert [72] and results from the fact that at any order of 
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perturbation theory, every tunneling process contributing to the energy shift has a 

twin with the roles of dots 1 and 2 interchanged. In any intermediate virtual state 

with eigenvalue n for h, the potential energy is greater than that for the unperturbed 

ground state by 6V(p) = U2n(n - p). Therefore, when dots 1 and 2 are interchanged, 

6V(p) -* SV(-p) for all the intermediate states. If we represent one of the twin terms 

by A(p), the other is A(-p), and we see that fp is constructed of sums that are even 

in p. 

Using the second-order (in t/S) parts of g and fp, we can now write a first-order 

equation for fp in terms of g: 

&   =   ^(^)[(W)M1-P) 
+(l + p)ln(l + p) + 0(up% (2.9) 

a result consistent with the large-JVcft calculation of the effective capacitance of a single 

dot at p = 0 [67]. Setting p = 1 to calculate the relative shifts of the original even and 

odd states, we find 

where we have used the fact that / as originally defined without the subscript is equiva- 

lent in our limits to fp=1. The above equation indicates that the plot of / as a function 

of gate voltage is not just a replica of the plot for g as a function of gate voltage —as 

a prima facie look at Waugh et a/.'s data might lead one to suppose [19, 43, 44]. In 

particular, for g < 1 and Nch = 2, Eq. 2.10 gives a slope of approximately 0.28 for f(g), 

rather than unity. Thus, in this regime, the fractional splitting / of the double-dot 

conductance peaks should lag g, the dimensionless barrier conductance per channel. 

2.5    Connection to the Strong-Coupling Limit 

If we blithely extended our perturbative equation for / to the limit g -»• 1, the large-Nch 

f would greatly overshoot its mark and the one or two-channel / would fall substantially 
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short. The real issue is not, however, how badly such a naive extrapolation fails, but 

whether we can connect these weak-tunneling results to those that can be calculated for 

the strong-tunneling limit. Having discussed the equivalence of the two-dot and one-dot 

problems at length in Sec. 2.3.2, we can turn to see what the current literature on the 

one-dot problem offers. For the large-Nch limit, a reasonable interpolation between the 

solutions for weak and strong coupling has already been found.8,9'11 

The situation is less clear for the case with which we are most concerned, in which 

Nch equals one or two. Flensberg and Matveev [33, 34] have proposed a useful Lut- 

tinger liquid approach in which the nearly transparent link between a single dot and 

an electrode is modeled as a one-dimensional channel with a slightly reflective poten- 

tial barrier. Convergence to the single composite-dot limit is achieved naturally and 

neatly, and E{nt is calculated perturbatively in r, where r is the reflection amplitude, 

and g = 1 — \r\2. Using the map between the two-dot and one-dot problem, we can 

translate Matveev's calculations of the leading term for (1 — g) < 1 to our language. 

We find that for Nch = 1 (i.e., assuming spin polarization), the fractional peak splitting 

in the two-dot problem when p = 0 is given by the following: 

/ = 1-C1^VW+--. (2-11) 

where 7 ~ 0.577 is the Euler-Mascheroni constant and C\ is an error factor on the order 

of 1 that we have inserted to guard against the possible imprecision of calculating in 

Luttinger liquid theory with a finite cut-off [79]. For the case relevant to the experiments 

of Waugh et al. [19, 43, 44], that of Nch = 2, adaptation of Matveev's calculation gives 

16e7 

/ = 1 + C2—3-(l-fli)ln(l-flf) + ... (2.12) 
71"° 

where C2 is an error factor analogous to C\. Except for the logarithmic factor in 

the second formula, these equations are of the form suggested by the scaling analysis 

of Flensberg [33], which predicts effective charging energies behaving as (1 — g)Nchl2. 

Matveev's initial two-channel solution is, in fact, linear in (1 — g) but diverges logarith- 
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mically as U2/6 -> oo. A higher-order analysis to eliminate the divergence [34] replaces 

the logarithm with argument U2/8 by one with argument (1 - g)'1. 

In Fig. 2.3, we show the /-versus-^ plots given by the weak and strong coupling 

formulas (2.10), (2.11), and (2.12) for Nch = 1 and Nch = 2 with d = C2 = 1. In 

each case, a possible interpolation between the weak and strong coupling limits is given 

by a dashed curve. For Nch = 2, the corresponding experimental data of Waugh et 

al. [19, 43, 44] is also plotted. Given the experimental error implicit in the dispersion of 

the data points themselves, the data is seen to be in reasonable agreement with theory. 

It is clear, however, that, unlike the calculations for Nch > 1, for Nch = 2 the order 

of calculation completed so far does not really allow confident interpolation between the 

weak and strong coupling limits. On the strong-tunneling side, C2 « 1.5 would effect 

greater agreement with our suggested interpolation: Luttinger liquid theory's prediction 

of d = C2 = 1 must certainly be checked. With respect to the weak-tunneling results, 

calculation of higher orders in perturbation theory should improve the matching, but 

such computations are made difficult by the fact that the correlations induced by the 

strong Coulomb interaction make normal Green's functions methods inapplicable [71]. 

Different time orders must be treated separately, and as appears to occur quite generally 

in Coulomb-blockade problems [80], the number of diagrams grows pathologically with 

the order in perturbation theory. Nevertheless, calculation of the #2-term in the weak- 

tunneling limit is conceivable, and this term may permit a more reliable interpolation 

between the weak and strong coupling regimes. 

Irrespective of the difficulty of connecting the strong and weak coupling limits, it 

should be emphasized that despite the uncertainty in the coefficients C\ and C2, the 

strong coupling results do give an important constraint on the form of the theoretical 

/-versus-^ curves—viz., the value of / must reach 1 at the point where g equals 1. Thus, 

a model that treats the Coulomb blockade peak splitting as a function of the interdot 

channel conductance produces the experimentally observed saturation splitting for a 
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Figure 2.3: Plots of the fractional Coulomb blockade conductance peak splitting / 
as a function of the dimensionless conductance per channel g in the weak and strong 
tunneling limits for (a) Nch = 1 and (b) Nch = 2 with coefficients C\ = Ci = 1 in 
Eqs. 2.11 and 2.12. Possible interpolating functions are shown by dashed curves. Data 
points from Waugh et al. [19, 43, 44] are given as triangles or stars; the two different 
symbols correspond to different data sets. The value of / for the experimental data has 
been extracted from the measured splitting fraction /' as discussed in Sec. 2.3.2 with 
U2/U « 0.9. This choice of U2/U corresponds to the constant interdot capacitance of 
20 aF and total single-dot capacitance of 0.4 fF estimated for the experiments of Waugh 
et al. [19, 43, 44]. 
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reasonable physical value of the parameter g that marks the strength of the interdot 

coupling. This fact can be understood by noting that a non-zero interdot conductance 

results in charge fluctuations between the dots for which the natural energy scale is U2, 

the energy scale that characterizes the difference between the p = 0 and p ■£ 0 ground 

states. As g increases, larger and larger charge fluctuations, in which multiple electrons 

move from one dot to the other, become increasingly significant, and the initial 5 = 0 

difference between the p = 0 and p ^ 0 ground states becomes less relevant to the 

energy of the g ^ 0 ground states, which after all are superpositions of a great number 

of g = 0 eigenstates with a wide variety of charge distributions. 

The decrease in the p-dependence of the ground state energy for g ^ 0 could be 

described, at least approximately, by an "effective interdot capacitance." However, the 

introduction of such a Active and, as noted in Sec. 2.2, unphysical mediator merely begs 

the question of how such a large effective interaction is produced. Tunneling provides 

an answer by allowing electrons to hop back and forth between the dots, interacting 

directly with their "neighbors" through the pre-existing g = 0 two-dot capacitances. 

2.6    Conclusion 

Following the work of Waugh et al. [19, 43, 44], we have investigated the relation between 

the barrier conductance and the Coulomb blockade for two electrostatically equivalent 

dots connected by one or more identical tunneling channels and have found an expla- 

nation for the evolution of the double-dot Coulomb blockade that does not rely upon 

unphysically large values for the interdot capacitance, the intradot level spacing, or the 

number of conducting channels. We propose to write the fractional peak splitting / of 

the Coulomb blockade conductance peaks as a function of the number of channels Nch 

and the dimensionless barrier conductance per channel g, assuming that the energy level 

spacing 6 is small compared to the interdot Coulomb blockade energy U2 and that U2 

is small compared to the bandwidth W of states over which the amplitudes for trans- 
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mission through the barrier are roughly constant. Using a "uniform thick-shell model" 

for the tunneling term in the Hamiltonian, we solve for this function to leading order in 

the limit of weak interdot coupling. We find that in this limit, the peak splitting should 

evolve linearly with the total barrier conductance with a slope substantially less than 

one. 

In order to solve for the strong-coupling limit, we have introduced a "fictional" 

difference between the gate voltages on the individual dots. Such a generalization of the 

two-dot problem makes it relatively straightforward to adapt our analysis to situations 

where there is a voltage bias between the two dots [45]. Its purpose here is to allow 

for a map between the previously unsolved two-dot problem and a better known one- 

dot problem. The strong-coupling results that we obtain via this mapping give an 

asymptotic form for the peak-splitting that behaves as (1 — fif)ln(l — g). 

In the case of Nch = 2, which is pertinent to the experimental results of Waugh et 

dl. [19, 43, 44], the present limiting forms for strong and weak coupling do not match 

up well enough to allow a reliable quantitative interpolation between the two limits. 

Nevertheless, a plausible interpolating curve is in qualitative agreement with existing 

experimental data. More precise experimental results would allow for a test of the slope 

predicted for the weak tunneling limit. An extension of current theory is still necessary 

to permit a convincing connection between the two asymptotic limits. 
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Chapter 3 

Subleading Results for the 

Coupled-Dot Blockade 

3.1    Introduction 

The opening of tunneling channels between two quantum dots leads to an erosion of 

the individual dots' Coulomb blockade [8, 13, 14, 15]. For a pair of electrostatically 

identical quantum dots (see Fig. 2.1(a) for a schematic view of the double-dot struc- 

ture), the progress of this erosion can be chronicled by tracking the splitting of the 

Coulomb-blockade conductance peaks as they evolve from doubly degenerate single-dot 

conductance resonances to nondegenerate double-dot peaks with twice the original pe- 

riodicity [19, 43, 44, 51, 53, 54]. For a system in which the tunneling channels can be 

treated as having the same individual conductances and in which the Coulomb charging 

energies are large compared to the single-particle level spacings but small compared to 

the tunneling channel bandwidths, the fractional peak splitting / can be expressed as 

a function of two parameters: iVch, the number of tunneling channels between the two 

dots, and g, the dimensionless conductance per tunneling channel. (In this chapter, the 

conductances indicated are always dimensionless conductances, by which we mean the 
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actual conductance divided by the conductance quantum, e2/h.) 

In particular, for weakly coupled dots (g -»• 0), the fractional peak splitting can be 

expressed perturbatively as a sum of terms of the form amj„(JVch)m5n, where 1 < m < n 

and am,n is independent of N& and g. Chapter 2 has produced the leading term in 

this expansion. However, as this term is simply linear in the total interdot tunneling 

conductance, gtot = N&g, it does not distinguish between behavior in the large-N& and 

small-iVch limits. To make such a distinction, one must calculate to second order in g, 

in which case one obtains two sets of terms, one proportional to iVch£2 = Ptot/-^ch and 

the other proportional to (N^)2g2 = <7t
2
ot. 

As in Chapter 2, the fractional peak splitting is calculated by adding an additional 

dimensionless parameter p to the problem, where p represents a capacitively weighted 

voltage difference between the two dots. The fractional peak splitting / is then found 

to be given by the more general function of p, fp, at p = 1. The introduction of the 

parameter p allows for a clear mapping between the problem of two tunnel-coupled dots 

and that of a single dot coupled to a bulk lead [51]. It also allows for consideration of 

experimental situations in which there is a voltage bias and p ^ 0 [45]. In addition, the 

introduction of this parameter allows for comparison of the results of our calculations 

with those of workers in the field of metallic junctions [67, 68, 70, 72, 81], who have been 

concerned primarily with calculating quantities such as "effective charging energies" 

tfeff (or, alternatively, "effective capacitances" Ceff = e2/2Ueff), which are related to 

derivatives with respect to p of p2fp. Thus, the (N&fg2 terms in the expansion of 

fp that we derive in this chapter can be compared with weak-coupling calculations 

from the theory of metallic junctions [67, 72] in which quantities such as the effective 

charging energy are expanded perturbatively in powers of Nchg. (The reader should 

note that, for the purpose of computing such derivative quantities as C/eff, the weak- 

coupling calculations performed in this chapter are only useful when p lies far from the 

singular point p = 1 [82].) 
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Some of the most interesting work on large-iVch metallic junctions has been concerned 

not with this weak-coupling limit but, rather, with the strong-coupling regime in which 

such a simple perturbative expansion in N&g is inapplicable [68, 70, 81]. Study of the 

strong-coupling limit g —»• 1 for small-N& junctions has also proven fruitful, revealing a 

dramatic dependence of the peak splitting on N&- In the cases of JV^ = 1 and N^ = 2, 

the leading corrections to a fractional peak splitting equal to one (/ = 1) have been 

found to be proportional to y/l- g and (1 - ff)ln(l - g), respectively [34, 51, 53, 54], 

and it has been hypothesized by Molenkamp, Flensberg, and Kemerink [33, 48] that, 

for iVch > 2 but finite, the leading nontrivial term is proportional to (1 - g)N^l2. This 

last suggestion appears to correspond to calculations of the "effective charging energy" 

C/eff for metallic junctions [68, 70, 81], where, once again, the effective charging energy 

is proportional to the second derivative of p2fp at p = 0. Consequently, Ues can be 

expected to scale with (1 — g) in the same manner as the p-dependent corrections to 

the fractional peak splitting / = fp=\, and it is reassuring that the metallic-junction 

limit gives an effective charging energy proportional to e~9tot^2, which is equivalent to 

(1 - 9tot/Nch)N^2 in the limit Nch -* oo. 

Despite the recent progress in study of the strong-coupling limit, for the case of most 

direct experimental interest, JVch = 2 [19, 43, 44, 48], the leading-term calculation [34] 

that has previously been used fails to be completely satisfactory for at least three rea- 

sons. The first is that this calculation does not answer the question of whether the 

coefficient of (1 — g) ln(l - g) is affected by the manner in which the ultraviolet cutoff 

is imposed in the low-energy bosonization approach [51]. The second is that the coeffi- 

cient of the subleading term linear in (1 — g) is both unknown and naively infinite [34]. 

Finally, there is the worry—which also applies to the weak-coupling result—that, for 

-^ch = 2, interpolation between the solutions for weak- and strong-coupling is difficult 

because the respective /-versus-«/ curves do not come especially close [51]. 

This chapter addresses these three concerns for the two-channel problem and also 



82 Chapter 3: Subhading Results for the Coupled-Dot Blockade 

extends earlier results for the general iVch-channel problem in the limit of weak coupling. 

In so doing, it illuminates the difference between large-N& and small-N& behavior for 

g « 0, creates a theory that can be more realistically compared to experimental results 

for iVch = 2, and argues for the universality of the results, which should be independent 

of the nature and magnitude of the ultraviolet cutoffs. Section 3.2 presents the g2 

extension of the weak-coupling theory and checks the result against calculations in the 

iVch -*■ oo limit. Section 3.3 gives the (1 - g) correction to the leading dependence in 

the strong-coupling limit for Nch = 2 and shows a plot of the experimental results and 

revised theoretical predictions for two-channel interdot junctions. Section 3.4 argues 

that the strong coupling results of Section 3.3 are independent of the nature of the way 

the ultraviolet cutoff is imposed and do not change when one allows the fermionic theory 

to stray from half filling. Section 3.5 summarizes the results, and Appendices A and B 

present technical details of calculations in Sections 3.2 and 3.3, respectively. 

3.2    The Weak-Coupling Limit for Arbitrary Nch 

For weakly coupled quantum dots, we use a model "site-to-site" hopping Hamilto- 

nian [51] and calculate perturbatively in the tunneling term ET'- 

H    =   HK + Hc, 
2 

i=l    v      k 

Hc   =    U2(n-p/2)\ 

HT   =   EE*(42.
cikxa + H.c). (3.1) 

c    k!k2 

As in Chapter 2, in these equations, i is the dot index; a is the channel index; k is the 

index for all internal degrees of freedom not included in the channel index; Hc is the 

part of the electrostatic potential energy that is affected by interdot tunneling; n is half 

the difference in dot occupation numbers, n = (n2-Äi)/2; p is a differential gate voltage 
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parameter and is restricted to values between 0 and 1 (as permitted by the system's 

unit periodicity); and JJi is the differential charging energy, which, for electrostatically 

equivalent dots, is given by the formula TJ<i = e2/(Cs + 2Cint), where Cjnt is the interdot 

capacitance and Cs is the total single-dot capacitance minus the interdot capacitance. 

If the dots are not electrostatically equivalent, the formula for U2 and the definition of 

p are more complicated [53, 54]. However, the model is still applicable, and the results 

for fp can still be used to obtain the peak splitting. 

These calculations are made palatable by assuming that U? is much smaller than the 

tunneling-channel bandwidth W yet much greater than the average intrachannel level- 

spacing 6: W ]> U2 ~> S. This assumption leaves us with a theory that we can consider 

to be in the continuum limit and that we can hope to be independent of ultraviolet 

cutoffs. As the bandwidth is presumably of the order of the Fermi energy ep, these 

assumptions are reasonable for the micrometer-sized dots of Waugh et al. [19, 43, 44], 

for which ep « 10 meV, U2 « 400 //eV, and 8 « 30 p,eV. 

As in Chapter 2, our primary goal is to calculate the fractional peak splitting /— 

i.e., the ratio of the distance between split Coulomb-blockade subpeaks for a given g 

and their maximal separation in the strong-coupling (g —► 1) limit. It was shown in 

Chapter 2 that, if the total number of electrons on the two dots is assumed even, the 

problem of solving for / is a corollary to the problem of solving for a more general 

quantity fp, which characterizes the ground-state energy of the double dot when the 

difference between the external potentials applied to the dots is nontrivial and the total 

number of electrons on the two dots is fixed and even. Recall the equation for fp: 

fp = ~VWJ4' (3-2) 

where Ap is the shift in the ground state energy induced by tunneling at a given value 

of the gate voltage parameter p and U2P1 /4 is the difference between the unperturbed 

ground-state energies for the given p and p = 0. In Chapter 2, it was shown that, for 
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symmetric dots, 

/ = fP=i • (3.3) 

It was also determined that fp exhibits the following leading behavior as g -»■ 0: 

41]  =   ^[(i - P) Mi-/») + (! + /») Ml+ *») 

+ 0(P
2
/TP)], (3.4) 

where ip = W/U2>l. Thus, the corresponding leading behavior for / is 

/(i) = l^Ndj, + OiN^/ii). (3.5) 

Extending perturbation theory beyond this result—i.e., beyond first-order in g— 

requires some laborious computation. The next-leading contributions come from two 

sources. The first, which we shall caU /j2A), arises from a combination of the second- 

order energy shift that has already been calculated and the second term in the formula 

that relates the tunneling amplitude t to the channel conductance g. (The first term in 

this formula was used to derive Eq. 3.4.) The second source of g2 terms, ffB), is the 

shift in the ground-state energy provided by terms that are fourth-order in t. 

The first contribution is relatively easy to calculate. The equation for g in terms of 

t has been derived for half filling by Frota and Flensberg [74] and for arbitrary filling in 

Chapter 2. In the latter calculation, the system is assumed to have a constant density of 

states between single-particle energies e0 and (e0 + W), the density of states being zero 

elsewhere. The system's level of "filling" is then characterized by the filling fraction 

F = (eF - e0)/W, where eF is the Fermi energy. In accordance with the half-filling 

result, one then finds the following: 

4X 
9        |1 + (1 + ^)2X|2   ' (3-6) 

where X = (*t/6)2 and v = (l/7r)ln[JF/(l - F)]. Inverting this expression, one discovers 

that 

62      4TT
2 

„2 

i + l-iP-g + 0(g2) (3.7) 
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Consequently, our first g2 term is equal to the right side of Eq. 3.4 multiplied by 

(l-A/2: 

+ (l + p)ln(l + p) + 0(/92/V')]. (3.8) 

This term is of the expected form a[ 2  N&g2, where a[ 2 ' is a function of p. 

On the other hand, a[ 2 ' is dependent on the filling fraction F, a fact which appears 

to imperil our dreams of a theory that is universal in that it is insensitive to the details 

of the high-energy behavior (including whether, for example, certain high-energy states 

exist and therefore have a role in determining the filling fraction F). We shall see, 

however, that the independence of fp ' actually serves our end, for it exactly cancels 

the .F-dependence of fp '. Asa result, we can further conclude that, through second 

order in the channel conductance g, expression of the fractional peak splitting in terms 

of the channel conductance is not only convenient for comparison with experiment but is 

also necessary and sufficient for constructing a result that can be hoped to be universal. 

To support this claim, we must actually determine the value of fp '. Sadly, it 

cannot be obtained as effortlessly as fp '. There are 24 separate terms that contribute 

to the fourth-order energy shift. One 12-member subset consists of terms proportional to 

(-^ch)2; the second consists of those simply linear in N&. All but four of the twenty-four 

terms correspond to a specific series of four tunneling events that begin and end with 

the double-dot system's unperturbed ground state. The remaining four, which belong 

to the (iVch)2 subset, correspond to the fourth-order terms in Rayleigh-Schrödinger 

perturbation theory that are products of the second-order energy shift and a propagator 

squared. These four have been described by Grabert as diagrams with insertions [72]. 

In general, the nature of the twenty-four fourth-order terms is most digestibly sum- 

marized via a diagrammatic representation that looks essentially like one of time-ordered 

single-particle diagrams (see Fig. 3.1). Despite the superficial single-particle nature of 

this representation, it is important to remember that the propagators that enter into the 
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energy calculations are the propagators for the entire double-dot system, which depend 

upon both the tunneling particles' individual kinetic energies and the system's multi- 

particle potential energy. The presence of the multiparticle potential energy makes it 

impossible to reduce the calculation to the normal Feynman diagrams, for which one 

can write the problem entirely in terms of single-particle propagators. The presence 

of exchange terms, which do not appear among the diagrams proportional to (iVch)
2, 

makes a pseudo-single-particle representation necessary. 

Within this time-ordered perturbation theory scheme, the individual fourth-order 

terms are plagued by both ultraviolet and infrared divergences. Every term is divergent 

as the bandwidth goes to infinity and four of the (iV"ch)2 terms are divergent as p -»• 1. 

(A different set of four is divergent as p -> -1.) From the result for /p
(1), we might hope 

to cancel the ultraviolet divergences and to obtain an answer for the ground-state energy 

that is infrared-singular but not infrared-divergent. Indeed, as Grabert has noted [72], 

the ultraviolet divergences of the (iVch)2 terms must drop out since, in the limit U2 -»• 0, 

these terms correspond to disconnected diagrams or insertion diagrams that exactly 

cancel one another and thus do not appear as Feynman diagrams. In contrast, the N& 

diagrams do have nontrivial Feynman-diagram analogs. As a whole, they correspond to 

a single totemic Feynman diagram—an individual ring marked by four tunneling events. 

The ultraviolet divergences of these diagrams are therefore expected to be persistent but 

irrelevant because we are interested only in the relative shift between the ground-state 

energies for arbitrary p and for p = 0 (recall Eq. 3.2). Accordingly, we expect that, when 

one subtracts the fourth-order shift for p = 0 from that for arbitrary p, the fourth-order 

terms produce a result that is neither ultraviolet- nor infrared-divergent but is infrared- 

singular as \p\ -» 1. A brief summary of the actual calculation of these terms follows. 

Those interested in more detail are invited to peruse Appendix A, which offers a fuller 

description of the calculation of the (JVch)
2 diagrams and a step-by-step computation of 

the contribution from one representative iVch term. 
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Figure 3.1: Diagrams for half of the (a) fourth-order, (iVch)2 terms and (b) fourth-order, 
iVch terms. The remaining terms are represented by diagrams that are mirror images of 
these. A vertical dashed hne is drawn for each of the m particles that tunnels at least 
once from one dot to the other. This line stands for the corresponding particle's initial 
state, a state that must be filled at the end of the four tunneling events in order to 
recover the unperturbed ground state from which the system starts. A particle begins 
at the bottom of its vertical initial-state line. Particles in dot 1 propagate upward and 
rightward. Particles in dot 2 propagate upward and leftward. A tunneling event for a 
particle is signaled by a solid dot that coincides with a bend in the particle-propagation 
path. Each particle must end on one of the dashed vertical lines, meaning that it 
ends in the single-particle state that corresponds to that line. Insertions (see Sec. 3.2) 
are represented by triangles that project off a single-particle propagation line. If the 
projection points up, the insertion corresponds to the term in the second-order energy 
shift for which a particle tunnels off the dot occupied by the propagating particle. If the 
projection points down, the insertion corresponds to the second-order term for which 
a particle tunnels onto the dot occupied by the propagating particle. In the absence 
of exchange, all particles end on their own initial-state lines. A two-particle exchange 
carries a minus sign and results in each of two particles ending on the other's initial-state 
line. Three-particle exchange carries no sign (alternatively, one can view it as carrying 
two canceling minus signs) and results in each of three particles ending on one of the 
others' initial-state lines. 
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For the less scrupulous, there are still a few facts worthy of note. A prominent 

feature of the fourth-order calculation is that each term involves the integration over 

four energy variables (ct-, where i ranges from 1 to 4) of a product of three propagators. 

In the (JVch)2 diagrams, the energy variables "pair off": a and e3 only appear as parts 

of the combination ei = (e3 - ex), and e2 and e4 only appear as parts of the combination 

fll = («4 - «2)- As a result, calculation of these terms reduces to the performance of 

double integrations over ei and en— albeit with a nontrivial density of states. 

The JVch diagrams cannot be handled in this way, for they involve particle exchanges 

that frustrate any desire to pair off the energy variables. The quadruple integration 

over the e,- cannot be eluded. It can, however, be expedited by differentiating twice 

with respect to p while integrating out the energy variables and, then, integrating twice 

with respect to p in the end. One might worry about the fact that, by differentiating 

twice with respect to p, one has lost knowledge of terms constant and linear in p. 

However, these terms are unimportant. As noted in Chapter 2, the ground-state energy 

(perturbed or unperturbed) is symmetric in p. Therefore, terms linear in p must cancel 

out of the fourth-order energy shift when all the terms are summed. Constant terms 

are similarly negligible since, as usual, we are only interested in the relative energy shift 

Ap - A0. 

After the aforementioned tricks for calculating the (iVch)2 and NA diagrams have 

been used, the only real wrinkles that remain are integrals of the form 

Jo (x + A)   ' 

where 0<\A\< B, R is either F or (1 - F), and, as before, ip = W/U2. The symbol V 

indicates that, for A < 0, only the principal value of the integral is calculated. These 

integrals can be done by rewriting the argument of ln(z + B) as [(x + A) + (B - A)] 

and Taylor-expanding about (x + A) for (B - A) < \x + A\ and about (B - A) for 

(B - A) > \x + A\. The result of such an integration may be sensitive to whether the 

system is below half fining [F < (1 - F)], at half filling [F = (1 - F)], or above half 
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filling [F > (1 - F)]. However, the system as a whole has particle-hole symmetry, so 

one expects that the final result—once all the terms are summed—is symmetric under 

exchange of F and (l-F). If there is no jump discontinuity when the system is precisely 

half full, the result for F < (1 - F) should determine the answer for all "finite" F, by 

which we mean all F such that Fi(>,(l - F)ij) > 1. This thesis has been explicitly 

confirmed. 

Indeed, the (iVch)2 part of the fourth-order relative energy shift is found to be in- 

dependent of the filling fraction. Its contribution to fp has a rather lengthy explicit 

form: 

A2B)        _    (iVdOVr   *2
n2,Af,       M  n       N 

•We)2    "      47TV   {~~6P  +4(1-P)ln(l-P) 

+ i^ln2(l-^)-2(2-/>)ln[2(2-p)] 

+ I±^ln(l + />)ln(l-/>) 

- 21n(3 - p) ln(l -p) + ln2(3 - p) 

2 + S4^Wi-,)-MS-),)f 

-(.-vrtgfcjR^r 
n=l 

5 In2 3 
+ 81n2 + 5K 

2 

+ [P - -P] } , (3.9) 

where the contents of the last pair of brackets indicate that one sums over all the terms 

in the curly braces again after replacing p with — p and the quantity K is given by 

-ESMä) • (3-10) 
n=l y    ' 

As mentioned in Sec. 3.1, this result can be compared with a calculation by Grabert 

in the iVch —> oo limit [72]. Grabert calculates an average value for n in the ground 

state that is given by the formula 
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for p between 0 and 1. It has been confirmed numerically that one-fourth the derivative 

of p2fp!(Ncb)
2 with resPect to P agrees with the (N&g)2 term in Grabert's perturbative 

expansion of (n). 

A further source of comparison with ffflch\2 comes from Golubev and Zaikin's 

weak-coupling calculation of the "effective capacitance" in the N& ->■ oo limit [67]. 

Taking their effective capacitance Ceff to be related to an effective charging energy U& 

by e2/2Ceff = Ues, one finds that 

«W% = i-iflV/') 
2    dp2 (3.12) 

p=0 

In Chapter 2, it was confirmed that the three weak-coupling calculations—ours, Grabert's, 

and Golubev and Zaikin's—give the same value for the effective charging energy through 

first order in iVch#. The (iVchtf)2 terms, however, do not agree. Our second-order result, 

as determined from Eq. 3.9, equals that derived from Grabert's calculation but is ap- 

proximately seventeen times larger than that found by Golubev and Zaikin. The present 

computation therefore provides an important check on the large-iVch calculations in the 

limit of weak coupling, resolving an apparent contradiction in the literature. 

There are no comparable calculations for the terms that are linear in N& as these 

are negligible in the large-N& limit. However, knowing that / = 1 when g = 1 and 

that /W « 0.14iVch5, one might conjecture that the sign of the g2 term changes from 

positive to negative when N& is of order 10. With respect to the expansion of /, such 

a crossover would imply that the coefficient of iVch52 is positive and approximately 10 

times the size of the negative coefficient of (iVch)2<72. 

To check this conjecture, we need to know the value of the fourth-order, linear-in-iVch 



3.2 The Weak-Coupling Limit for Arbitrary N&. 91 

contribution to the fractional peak splitting. Our results for this quantity are 

Ä = &*V(W)MW) 4?rV 

+ l(l-p)ln3(l-/>) 

-2(2 + ln2)(l-p)ln2(l-/>) 

( 7T2 

+ 4 f 2 + In 2 - In 21n 3 - K + — 

x(l-p)ln(l-p) 

-2 y— -2K-21n21n3 

x [(3 -p) ln(3-p) -3 In 3] 

- |[(3 - p) ln3(3 - p) - 3(3 - p) ln2(3 - p) 

+ 6(3 - p)ln(3 - p) - 31n33 + 91n23 - 18In3] 

- 21n2[(3 - /t>)ln2(3 - p) - 2(3 - p)ln(3 - p) 

-31n23 + 61n3] 

-^Aiip) 
i=l 

+ [p^-p]}, (3.13) 

where K is given by Eq. 3.10, rj = (l/ir)hi[F/(l — F)], and the Ai(p) are defined below: 

M{p)   =    -      dx I 
p     (p - aQln2(3 - x) 

1-x 
)ln(3- 

1- 

A3(p)   =    -21n2      ^~KH       >    v ; 

Jo 

A2W = „/^ferfJMs-.wi-.) 
JO 1-z 

da; 
1-x 
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AtM   -   2(1 - rt jf A, u(|5f) l.(l5£) 
.   1        1 

X 
3 — x     1 — x 

*M   =   2j('(i,(,-,)1n(|^)(5i--Il_) 
rP      ^-T)ln

2( 

3 - x >/0 

7o 3- x 

Jo 3-x 

1        1 
X 

3 - x     1 — x 

A10(p)   =   -2^dx{p-x)]n(j-^\ 

x /_1 1_\ 
\3 — x      1 — x ) 

M\(p)   =    - j  dx\n2(l-x)ln(l + x) (3.14) 

The characterization of the fourth-order energy shift is now essentially complete. 

The result is more unwieldy than we would like. However, there are a few highlights 

that are easy to draw out. As expected, the fourth-order shift is neither ultraviolet- 

nor infrared-divergent but is singular as \p\ -»■ 1, the leading singularities being in 

agreement with an earlier calculation by Glazman and Matveev [73]. In addition and 

quite gratifyingly, the solution is independent of the filling fraction F. As discussed 

earlier, the dependence of ffB) on the filling fraction, which is concentrated in the rf1 

term of the first line of Eq. 3.13, exactly cancels that of Eq. 3.8. Hence, there is some 

reason to believe that, when expressed in terms of the channel conductance g, the result 

is universal in the sense that it is independent of the details of the band structure for 

energies much greater than U2, where U2 is much less than the bandwidth W. 

It is difficult to get a better handle on this algebraic smorgasbord by mere inspection. 
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One can add some precision to the picture of what has been accomplished by first 

assembling the g2 terms of fp and then plugging in p = 1 to obtain the contribution to 

the symmetric-dot fractional peak splitting /. Upon recalling that 

f(2) _  f(2A)   ,    A2B) ,(2B) 
Jp     - Jp       -I- JPl(Nch)2 + Jp,Nch > 

one can evaluate the A\ integrals numerically for p = 1 to obtain 

/<2>  «  [o.i49i]iW - [o.ooozasKiVch)2«?2 

+ 0[(iVch)V/V']. (3.15) 

We see that the conjecture about the (iVch)2 and N^ contributions to fW is correct: 

the terms have opposite sign, and the ratio of their magnitudes is on the order of 10. 

For the case of N& = 2, the g2 term provides the desired upward correction to the 

/-versus-^ curve. 

Before specializing to the result for N& = 2, we should explore the consequences of 

having a term proportional to N^g2. This term makes the result sensitive to the "fine 

structure" of the interdot conductance. As remarked in the introduction, terms of the 

form (iVchff)" can be rewritten as a simple power of the total conductance between the 

dots: (iVchfir)™ = (<7tot)n- Should the conductances in the various tunneling channels be 

allowed to differ, the form of these terms when written in terms of #tot would remain 

unchanged. The only alteration would be in the equation for 0tot itself, which would 

revert to the more fundamental form 

gtot = X><7, (3.16) 

where ga denotes the dimensionless conductance of the ath channel. 

For terms proportional to (N&)mgn with m ^ n, the situation is quite different. 

Consider the N&g2 term in Eq. 3.15. If we had suspended the sum over channels until 

the end of our calculation, we would have seen that these terms are proportional to 

[<72]tot = I>* ■ (3-17) 
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Only when symmetry considerations constrain all the individual channel conductances 

to be equal can we safely use [g2]tot = (5tot)2/^ch- 

Consequently, for the general situation in which the conductances in the separate 

channels are not necessarily equal, the appropriate equation for the fractional peak 

splitting is the following: 

/ « O.14O5(0tot) + 0.1491[«72]tot - 0.009798(<7tot)
2 + ... (3.18) 

If we extended the expression to nth order in the dimensionless conductances, it 

would contain factors such as 

[ffm]tot = $>r, 

where m < n and these factors appear both alone and in combination up to nth order 

in dimensionless conductance. The details of the "fine structure" are fully characterized 

by the set of [gm]tot for 1 < m < N&, and the fractional peak splitting can be expressed 

in terms of these. Further modifications might be thought necessary to account for the 

"hyperfine structure" that results from allowing the tunneling amplitude t in Eq. 3.1 

to be a nontrivial function of ki and k2. However, as long as the tunneling amplitude 

varies little over an energy range of order £/2, one would not expect Eq. 3.18 to be 

changed substantially. 

3.3    The Strong-Coupling Limit for Nch = 2 

The g2 correction to the two-channel solution boosts confidence in the small-p end of 

our /-versus-£r interpolation (see Fig. 3.2) but does little to improve the precision of 

theoretical predictions in the strong-coupling limit, a fact of particular concern for the 

experimentally relevant case of two interdot tunneling channels [19, 43, 44, 48]. The 

sections of the chapter that follow improve the strong-coupling theory for Nch = 2 in two 

substantial ways. The first contribution, presented here in Sec. 3.3, is the calculation 

of the second term in the (1 - g) expansion about the g = 1 ground state. This term, 
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which is linear in (1 — g), is of interest both because it is significant in determining the 

shape of the /-versus-«? curve and because, in the calculation that yields the primary 

(1 — g) ln(l - g) term [34], the (1 - g) term is naively ultraviolet-divergent. The second 

important contribution, which comes in Sec. 3.4, is the provision of powerful evidence 

that the coefficients of the leading terms in the (1 — g) expansion are indeed independent 

of the high-energy structure of the theory. 

To calculate in the limit of g —> 1, we model the tunneling link between the dots 

as a one-dimensional channel with a delta function scattering potential at its center. 

This model was originally developed for the problem of a single dot connected to a bulk 

lead [33, 34] but was shown in Chapter 2 and in a paper by Matveev, Glazman, and 

Baranger [53] to be easily adaptable to that of a pair of coupled dots. Within this ansatz, 

the value of the double-dot charging energy is a simple reflection of the total number of 

electrons that have been transferred through this channel from one side of the barrier 

(dot 1) to the other (dot 2). In addition, as the system is effectively one-dimensional, 

the fermionic degrees of freedom can be bosonized, and the Euclidean action assumes a 

characteristic Luttinger-liquid form [33, 34, 62]: 

5      =     So + Smt + 5b , 

a      Um 

rß 
Sint     =       #2 5>oo p 

5b 
VW 
2?r 

Jo    T \V* 
Erß 

/   dr cos[2V^(r)]. (3.19) 

In these formulas, 0C{T) is a bosonic field that tracks the displacement of the one- 

dimensional electron gas at the barrier (a; = 0), and 9a(um) is its Fourier transform: 

^(r) = lEe_iu,mT^(a;-)' (3-2°) 
where r is an imaginary time divided by h, ß is the inverse temperature (ß = 1/kßT), 

and um is h times a bosonic Matsubara frequency {um = 2irm/ß). In addition, V is a 
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measure of the barrier strength defined by V = VQ/hvF for the delta-function potential 

V0S(x). As for the remaining parameters, vF is the Fermi velocity and, as in the weak- 

coupling theory, W is the bandwidth—the difference between the lowest and highest 

single-particle energies in the channel. The inverse temperature ß will be taken to 

infinity in calculating the energy of the ground state. 

As in the weak-coupling theory, we ultimately want to parametrize the coupling 

between the dots by the dimensionless channel conductance g, rather than the barrier 

strength V. Accordingly, we need to find the relation between g and V. In our single- 

mode channel, g equals the single-particle transmission probability T, and (1 -g) equals 

the reflection probability R. The leading dependence of the channel conductance on V 

equals what one would guess from the reflection probability of a single particle incident 

upon a one-dimensional delta-function potential [83]: 

(l-g) = V2 + 0(V4). (3.21) 

Inverting this formula, we find that 

V2 = (l-g)+0[(l-g)*\. (3.22) 

To lowest order, we have the approximation of Matveev [34], V = y/T=~g, which—it 

will be seen—is all that is required for the calculations in this chapter. 

Having prepared ourselves to switch from a solution in terms of V to one in terms 

of g, we proceed with the calculation of the ground-state energy. Our first move is 

to reorganize the action, expressing it in terms of bosonic fields that characterize the 

net charge and pseudospin degrees of freedom, where the pseudospin degrees of freedom 

correspond to "true spin" only if the two channels correspond to spin-up and spin-down, 

respectively. Defining the charge field by 0C = 6t + 02 + 0Fp/2 and the pseudospin field 
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by 6S = &i — 62, we find 

S     =    Sis) + Sjc) + 5b , 

S0}     =       ^T,\^\\UUm)\2 , 2ß 
Urn 

Urn 

sh =     — I drcos[V5Fec(r)+—lcos[-v/5Fös(r)] . (3.23) 
IT   Jo L 2 J 

The Euclidean action has now been written in terms of "high-energy" charge modes 

and "low-energy" pseudospin modes. We advance by integrating out the "high-energy" 

charge degrees of freedom. This integration is analogous to a renormalization in which 

one integrates out the higher-energy degrees of freedom within a particular channel [84]. 

One begins with the generating functional for the Euclidean action of Eq. 3.23: 

Z =  (D[0S{T)}JD[9C{T)} c-s[*.(r),*c(r)] ? (3.24) 

where, as usual, time-ordering is implicit within the functional integral approach. One 

then performs the integration over the fast modes to obtain the generating functional 

for an effective action depending only on the slow modes: 

=   JD[9S{T)} 

e-W»    =    ^WWle-fV*. (3.25) 

Equation 3.25 determines the effective action 5eff- To solve for it, one Taylor-expands 

the exponential factor e""Sb, performs the integral over charge degrees of freedom, and 

re-exponentiates the result. Before doing any of this, it is useful to make the following 

definition: 

A       mdlM£^. (3.26) 
smwu-4* 
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One can then rewrite Eq. 3.25 as follows: 

{«) 
;-Seff     =     e-5^(e-5b 

M 
l-<^b)c+^)c + 0(F3) (3.27) 

(3.28) 

=   e    ° 

Upon re-exponentiation, one obtains 

Seff   =   4S) + <5b)c - \ ([5b - (5b)J
2)c + 0(F3), 

It is clear that to solve for the effective action to order V2 = (1 - g), we must solve for 

both corrections to S^ on the right side of Eq. 3.28. 

Details of the calculation of these terms are presented in Appendix B. The result is 

that 5eff = S« + 5f} + SJ?\ where 

5*D   =    ^e-f^)co.(^)^co.[^(r)], 

:(2) /FWX 

1>     -   I   _ 
\ 

.-^c(0)    fP
dTi    f 

Jo       Jo 
dr2 

e—7TÄ'C(T1-T2) X W(?) [, 
- sinh[7rürc(7i - r2)]} 

X cosfVSFö^n)] cos[v
/7rös(r2)] (3.29) 

The function KC(T) that appears in these formulas is the charge-channel correlation 

function, KC{T) = (0c(r)0c(O))c. Its numerical value can be found from the formula 

1        A00 

KC{T) = -Re /    du ■ 
x     Jo u + 2U2 

(3.30) 

To progress further, we define a new "unperturbed action" 5New = 5^s) + S^\ We 

then write down the Hamiltonian that corresponds to this action: 

#Ne =    ^') + ^1), 

jy, a) vw 
■K 

^(0)cos(^)cos[^s(0)] (3.31) 



3.3  The Strong-Coupling Limit for N& = 2 99 

This is the Hamiltonian diagonalized by Matveev [34] through a process of "debosoniza- 

tion" (see Appendix B) in which the Hamiltonian is rewritten in terms of fermion op- 

erators dk and d: 

4S)   =    I   dkikd\dki 
./-A 

M        r 
=   A j   dk \d\(d + <*t) + (d+ tf)dk -"b (3.32) 

Here the single-particle energy £fc, the fermion interaction parameter A, and the wave- 

vector cutoff A have the formulas ^ = hvpk, A = V cos(irp/2)y/2eihvFU2/T3, and 

A = W/2hvF. 

Since the Hamiltonian is now quadratic in fermion operators, a Bogoliubov trans- 

formation brings it to the desired diagonal form: 

/•A 

#New = 41 + J    dkZk (c\Ck + C\Ck)   , (3.33) 

where, if we write down only the terms of lowest order in V, replacing all others by an 

ellipsis, 

t Ck   =   ^=(dk + tf_k), 

Ck   =   ^{dk~d-k) + (3.34) 

The correction to the V = 0 ground-state energy is produced by the omitted terms 

in Cfc (for details, see Appendix B). In particular, using A^J to represent the difference 

between the ground-state energies of H^ev/ for V = 0 and for arbitrary V, respectively, 

one finds that 

4e^2l 

x(ln[y2cos2(^) 

-1 + ln 

In 

(3.35) 

As before, tp = W/U2, where the bandwidth W > U2. 
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We see that the result for this first correction contains terms that are quadratic in V 

and logarithmically divergent in ip. This ultraviolet divergence is circumvented by the 

statement that one should replace W by U2 because keeping only the first term from 

charge-channel integration is only a good approximation for energies less than the charg- 

ing energy U2 [34]. The terms in Eq. 3.35 that are merely quadratic in V are thereby ren- 

dered finite and can be dropped in favor of the leading V2 cos2(7rp/2) \n[V2 cos2(irp/2)] 

dependence. 

To eliminate the logarithmic divergence more formally, one must calculate the shift 

in the ground-state energy that is induced by s£2) (recall Eq. 3.29). As this term is itself 

quadratic in V and as we are only interested in knowing the ground-state energy to order 

V2, we can drop all but the leading part of the S^-induced shift. In expressing s£2) 

in terms of the diagonalizing operators of if New, one may use the truncated formulas of 

Eq. 3.34. The relevant shift in the ground-state energy is then found by calculating the 

expectation value of s£2) in the ground state of #New (see Appendix B): 

ASM = ^w(f) 
x J    dx [l - e-^(w)] LlJL- , (3.36) 

where units have been chosen such that h = 1 and terms independent of p have been 

dropped since they are not relevant to evaluation of the fractional peak splitting /. 

It is not too hard to see that the factor [1 - e-*Kc(2x/w)] in the integrand makes for 

an ultraviolet cutoff of order tp = W/U2 (see Appendix B). It is even easier to see 

that (1 - e~x) provides an infrared cutoff of order 1. Thus, one can surmise that the 

leading term from the integral is ln(V>/2), which is precisely what is needed to cancel 

the ultraviolet divergence in A^. 

What remains is to calculate the rest of the integral in Eq. 3.36, which we call $: 

(j°°dx [l-e-^c(t)' $    =     lim  f  Hdx r*       -fc.t2M.Wl-e-* 
1p—+<X> 

-In (3.37) 
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Numerical approximation of the integral in the limit ifi —> oo gives $ = 0.1703 ± 0.0002. 

One can now sum A^tj. and AgJ to get the strong-coupling energy shift through 

order V2. Having dropped terms that are independent of p, one has 

-l + § + hK]j + ... (3.38) 

We can now straightforwardly compute the fractional peak-splitting / in terms of 

the dimensionless conductance g. As mentioned before, if we are only interested in 

obtaining the ground-state energy to order (1 - g), only the leading term of Eq. 3.22 

is relevant in converting Eq. 3.38 to an expression in terms of (1 — g). The value of 

/ = fp=i follows from the fact that, in the strong-coupling limit, 

_        Astrp) ~ Astr(0) ,       . 
}p-1 ThP^U      • {S-69) 

In particular, Eqs. 3.22, 3.38, and 3.39 yield 

16e7 

7T 

16e7 

l-ln|^)-$ (l-g)+... (3.40) 

Since $ « 0.1703, we have 

/ « 1 + 0.919(1 - g) ln(l - g) - 0.425(1 - g) + ... (3.41) 

Having determined the first corrections to the leading behaviors for both g —>• 0 

and g —► 1, we now have a more plausible picture for the connection between the 

jVch = 2 weak- and strong-coupling limits (see Fig. 3.2). The fit to the data could be 

improved if the interdot capacitance were larger than experimentally estimated [19, 44, 

51] or if asymmetry between the dots were important [53, 54]. In any case, whether 

or not such further emendations should be made, the theory is within the range of 

present experimental error. The corrections introduced in this chapter have moved the 
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weak- and strong-coupling predictions by reasonable amounts in the desired directions, 

increasing both the ease and the precision of interpolation between the weak- and strong- 

coupling limits. 

3.4    Insensitivity to the High-Energy Density of States 

3.4.1    Insensitivity to the Functional Form of the Bosonic Cutoff 

To have confidence that our coupled-dot calculations can be usefully compared to em- 

pirical data, we should make sure that the result, / expressed as a function of g, is 

independent of the details of the band structure far from the Fermi surface, where the 

assumption of a constant density of states becomes invalid. We have done much to 

confirm such robustness in the regime of weak coupling, for we have shown there that, 

through second order in g, f(g) is independent of the bandwidth W and the filling 

fraction F as long as both FW and (1 - F)W are much larger than the charging energy 

U2. Such dual invariance indicates that we can simply shear off a nontrivial number of 

high-energy states without affecting the result. We would expect then that we could 

make less Draconian modifications of the high-energy density of states with similarly 

perfect impunity. 

With regard to the strong-coupling theory, matters have been left less assured. In 

Chapter 2, we introduced a factor of C2 multiplying the first term in Eq. 3.40 to guard 

against the possibility that the coefficient of the energy shift calculated via bosonization 

was partly a product of the approach itself and, in particular, the manner in which the 

ultraviolet cutoff was imposed. Concern about such a possibility arises from the fact that 

the leading term in the (1 - g) expansion is proportional to the product of e~?KcW and 

A, where A is the generalization to non-exponential cutoffs of the normalization factor 

in Eq. B.10 that gives the proportionality between the fermionic position operators and 
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1.0 0.2 0.4 0.6 0.8 
Dimensionless interdot conductance g 

Figure 3.2: Graph of the fractional Coulomb-blockade peak splitting / as a function of 
the dimensionless conductance per channel g in the weak- and strong-tunneling limits 
for iVch = 2. The new theoretical curves are depicted as solid lines. The old theoretical 
curves from Chapter 2 are dot-dashed lines. The dashed curve shows a possible inter- 
polating function. Data points from Waugh et al. [19, 43, 44] are given as triangles or 
stars; the two different symbols correspond to different data sets. The value of / for the 
experimental data has been extracted from the measured splitting fraction /' by using 
the method discussed in Chapter 2 with experimentally estimated values of 20 aF for the 
constant interdot capacitance and 0.4 fF for the total single-dot capacitance [19, 43, 44]. 
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the exponentials of bosonic fields: 

rf(0,T) = Aei^f(rK (3.42) 

Changing the nature of the bosonic cutoff [e.g., from the exponential e-aM to the 

Gaussian e-(*l*)c?<f] causes the value of e-f Kc(o) to be multiplied by a constant fac. 

tor. Although one would hope that a similar shift in the value of A compensates for 

the change in e~f K^°\ to the authors knowledge, such a happy circumstance has not 

previously been checked to be true. 

Similar questions could be asked about the prefactor for the term linear in (1 - g), 

with which we associate a factor C3, where C3 = 1 for the Luttinger-liquid approach 

with the standard exponential cutoff. This term is proportional both to m2e-7rA'c(°) 

and to an integral that depends upon e-*
K^T) (see Eq. 3.36 in Sec. 3.3 and Eq. B.26 

in Appendix B). Hence, in order to prove that the two leading strong-coupling terms 

do not vary with the choice of cutoff function, one must show that neither the product 

X>i = \A\2e~*K^°) nor the integral 

V2   =   ^1       dx(W-x ßwJo 
•ßW/2 

ix I £ 
2 

1-e 1 _ e-irKc(2x/W) 
X 

(3.43) 

assumes different values when the shape of the cutoff is changed. Though we do not 

have a general proof that Pa and V2 are independent of the cutoff function, we can show 

that they remain the same for a whole class of functions that includes the exponential 

cutoff and that they are similarly unchanged when one replaces the exponential cutoff 

by a Gaussian. We believe that these facts are convincing evidence that the prefactors 

in Eq. 3.40 are insensitive to the nature of the high-energy cutoff. 

First, we prove that Vx and Z>2 are the same for all cutoffs of the form 

u{u, a, {bm}) = e-QH U+J2 bmam \u;\mY (3.44) 
V 771=1 / 
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where either M is finite or, for large m, bm falls to zero faster than m~^/m\ for some 

real C, > 0. As usual, it is assumed that aZ72 -C 1, where a = 2/W. We add the further 

assumption that [(m - 1)! bmaU2] < 1 for all m. 

The first step in our proof is to solve for the change in e-,rÄ=(0) when one goes from 

the standard exponential cutoff v(u>, a, {0}) to the more general form v(u>, a, {bm}). The 

formula for KC{T) (recall Eq. 3.30) becomes 

j rco g-jVw 

KC(T) = -Re /    du v{u, a, {bm}) ^ • (3-45) 
T        Jo U + -^ 

We can write the change in Kc(0) as 

i     ™ roo       nmL.m.p—au! 
ffiTc(O) = -Yjbm       du j_. (3.46) 

*~      Jo u + ^ 

Using u = (u> + 2Z72/7r —2C/2/"") and the binomial theorem, we can expand um in powers 

of {u + Wil^). The integration is then straightforward and yields 

M 

7rffi'c(0) = Y, M™ - 1)! [1 + 0(aU2)]. (3.47) 
m=l 

Dropping the correction, we have the result 

e-*Ke(0) ■ Y,bm(m-iy. B-nKClo(0) 
1 (3.48) 

where KCIO(T) is the correlation function for the standard exponential cutoff. 

Calculation of the change in the normalization constant A is more complicated. 

Following V. J. Emery [55], we find 

\A\~2=        dxeJo «^"(«.«.{M) s + c.c. (3.49) 
J—00 

A bit of calculation reveals that 

|.4|-2     =      [e-Sif=16n.(m-l)!|    rdx(      <*      ) 
1 J J-00      \a-ixj 

XeE 6m(m-l)! (=fs)m + cc_ (3_50) 
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It is apparent that the bracketed factor exactly cancels the factor that multiplies 

e-*Kefi(o) in Eq 3i48   TlmS) in Qrder for Vi = \A\2e-*K40) t0 be unaltered, the value 

of the integral in Eq. 3.50 cannot change as the bm are varied. In short, the partial 

derivative of the integral with respect to each of these coefficients must be zero. The 

partial derivative with respect to bm is given by the following formula: 

Pm    =    (ro-1)!  f°°dx(-^—Y 
y.oo      \a-ixj 

xe^>-D!(Är + ,, (3.51) 

Let z = a/(a - ix). The resulting integral in the complex z plane follows a closed path, 

beginning and ending at z = 0: 

Pm = -ia(m - 1)! Idzz™-1 cEM»»-i)!*m + c.c. (3_52) 

For M finite or bm falling off faster than m-t/ml, the integrand is analytic throughout 

the region enclosed by the contour. By Cauchy's Theorem, Pm = 0. 

Since the integral of Eq. 3.50 does not vary with bm, we can make the statement 

Ml5 e£m=i bm(m-l)l Mo|2, (3.53) 

where A0 is the normalization factor for the standard exponential cutoff. Equations 3.48 

and 3.53 yield 

Pi = \A\2e-*K<W = |.4o| V**«.o(0). (3.54) 

We have now shown that, for the class of cutoffs i/(w, a, {bm}), C2 is constant. 

What about C3? To determine its fate, we must find the change in the quantity T>2 

(recall Eq. 3.43). After substituting a for (2/W), we follow essentiaUy the same path 

that we blazed in determining the change in ufc(0) and find that the change in Kc(ax) 

is given by the formula 

M 

SKc(ax) = l-f^bm(m-l)l 
2TT (1 + ix)r + c.c. (3.55) 



3.4 Insensitivity to the High-Energy Density of States 107 

Employing this, we can break the integral on the right side of Eq. 3.43 into two parts, 

the first of which is from 0 to ^>1_£, where 0 < e < 1 and if) = (W/U?) > 1. In this 

interval, the contribution from the entire term proportional to e-^
Kc(ax) can -^e shown 

to be zero in the limit tp —»■ oo. In the remainder, 8Kc(ax) is on the order of 1/x2, which 

implies that the correction due to the generalization of u(u, a, {bm}) is proportional to 

rßW/2       e-irKcfi(2x/W) rßW/2 dx 

J^l-e X3 ~ J^i-e      X3 ' 

which also equals zero in the limit tp —► oo. Therefore, £>2 is constant, and we have 

proven that our strong-coupling results are insensitive to varying the cutoffs within the 

class i/(w, a, {bm}). 

The values of T>\ and T>2 can be shown to be similarly unaltered when we switch 

from the exponential cutoff to a Gaussian: 

vG(u,a) = e-fa2"2. (3.56) 

Solving for e_irA'c(°) with this weight function, one discovers that 

aU2, (3.57) 
"Y/2 

-^C,G(0) _  e_ 

where 7 is once again the Euler-Mascheroni constant. The normalization coefficient AG 

has not been solved for analytically. However, starting from Eq. 3.49, one finds that 

\AG\~
2
    =   not       dxcos  -Erf(x/2) 

Jo ^ J 

xe^/o**e-»a/«Erf(,W2)) (3.58) 

where Erf(x) = (2/-^) J^dt e_t is the error function. It has been confirmed numeri- 

cally that through at least 12 digits the product X>I,G = |.4G|2e-,rAc'G(0) agrees with the 

exponential cutoff. By arguments similar to those used for the class of cutoff functions 

studied above, it has also been shown that in the limit ip —>■ 00, the integral T>2,G is 

the same as for the exponential. The coefficients in Eq. 3.40 are again unaltered, and 

it seems reasonable to suppose that the invariance is general. 
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3.4.2    Insensitivity to the Fermionic Filling Fraction 

Thus, it appears fairly certain that modifying the high-energy density of states in the 

bosonized theory does not affect the results of Sec. 3.3. Nevertheless, having solved the 

weak-coupling model for the general case of a fermionic system not necessarily at half 

filling and having seen that, when expressed as functions of the tunneling amplitude, 

both the conductance and the fractional peak splitting depend upon the filling fraction, 

one might wonder what happens to the strong-coupling results when one begins with a 

fermionic system that is not necessarily at half filling. Since Luttinger-style bosonization 

assumes symmetry between occupied and empty states, such a system can only be 

properly bosonized after the asymmetric fermion states have been integrated out. For 

example, if the system is below half filling [F < (1 - F)] and the zero of energy is at 

the Fermi surface (eF = 0), the fermionic single-particle states with energies between 

FW and (1 - F)W must be integrated out, leaving a symmetric effective theory with 

single-particle energies ranging from -FW to FW. Only after this symmetrization can 

the theory be bosonized without losing knowledge of the fermionic filling fraction F. 

The task before us, therefore, is to "symmetrize" the fermionic theory that lies 

behind the bosonized action of Eq. 3.19. The archetypal fermionic Hamiltonian consists 

of the usual three parts: the single-particle kinetic energies, the multiparticle potential 

energy, and the backscattering barrier. The Hamiltonian therefore takes the following 

form: 

H    =   HK + Hc + HB, 
2 

j=l    <r       k 

Hc   =   U2(h-p/2)2, 

HB    =    J2 J2 V(C2k2<rClkl* + H.c.), (3.59) 
o    k\ki 

where & = hvpk and j is the index that distinguishes between right-movers (j = 1) 

and left-movers (j = 2). 
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The operator n is now somewhat more complicated than in the weak-coupling theory. 

In its simplest form, it can be written as 

" = lT,[dx t0^) - 0(-*)] tfwtji*)> (3-6°) 

where Q(x) is the Heaviside step function and ipj is the annihilation operator in position 

space for a right-moving (j = 1) or a left-moving (j = 2) fermion. After writing the 

components of the integrand in the momentum representation and integrating over x, 

one finds that, for a one-dimensional system of length L, 

j        <T     fci k-2 

which is equivalent to the integral version obtained by Matveev [34] from the observation 

that dii/dt equals the current operator at x = 0, the point of "division" between the 

two dots. (This point is, of course, not entirely well-defined in the limit g —> 1.) 

The above equations for the Hamiltonian and number operator are presented as 

discrete sums. For future reference in implementing the symmetrization of the theory, 

we write the components of our Hamiltonian in integral form: 

HK   =    ( -j- ) J2 / dk & c)kvcito ' 
V J   3=1 J 

Hc   =   U2(n-p/2)2, 

where 6 is the level-spacing for the one-dimensional system (6 = 2whvp/L) and 

n 
2TT ■ . 

3       " 

For the fermionic strong-coupling model of Eq. 3.59, calculation of the channel con- 

ductance between the dots proceeds along the same lines as for weak coupling (see 

Chapter 2).   In fact, since the density of states is constant in both theories, setting 
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U2 = 0—the first step in the conductance calculation—renders them essentially identi- 

cal, the only differences being in the last term, where t has been replaced by v and the 

index i for dot-1 or dot-2 fermions has been replaced by the index j for right-movers 

or left-movers. Accordingly, unlike the weak-tunneling term HT, the perturbation HB 

scatters fermions backward instead of transporting them forward and therefore causes 

a reduction in the conductance of the unperturbed system. Recalling the size of the 

conductance induced by HT in the weak-coupling model, it is not hard to see that the 

channel conductance in the strong-coupling model is given by 

9 = 1-\l + (i?iT,)2X\2> (3-64) 

where X = (xv/6)2 and 77 = (l/ir)ba[F/(l - F)}. As in the weak-coupling theory, the 

result becomes troublesome as x becomes large. However, we should be able to trust 

its testimony that the filling fraction does not affect the interdot conductance through 

second-order in (KV/S). 

This is all we need to know, for (irv/6) can be straightforwardly written in terms of 

our previous strong-coupling parameter V. The relation is V = 2(irv/6), and it follows 

that x = (V/2)2. We recover the leading-order result of Eq. 3.22 and see that, to order 

V2, the channel conductance g is independent of the fermionic filling fraction F. If we 

can likewise show that the relation between V and the differential energy shift 

<!>A(p) = [Astr(p) - A8tr(0)] (3.65) 

does not depend on the filling fraction F, we will know that the same is true for our 

final strong-coupling result, the expression for f(g) in Eq. 3.40. 

To prove <5A's invariance with respect to F, we symmetrize the fermionic theory 

through a renormalization in which we integrate out all single-particle states at an 

energy distance of W/2 or more from the Fermi surface, where U2 < W < W. 

The resulting symmetric theory with bandwidth W can be bosonized without further 

qualm. However, as renormalization generates terms that are not present in the original 
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Hamiltonian, we must check to see what relevant effects these have upon the low-energy 

theory. We must also keep track of any contributions to SA that arise from the high- 

energy degrees of freedom alone. 

Before we go about doing this, a comment on our approach is in order. One might 

view the proposed renormalization as occurring in two distinct stages: first, we integrate 

out the asymmetric particle-hole states; then, we integrate both particle and hole states 

down to energy W'. Since all that we will need to consider are the general scaling 

properties of the terms generated during the renormalization process, the distinction 

between the stages is of no importance and is henceforth ignored. 

The argument resumes. Since our interest is in the Coulomb blockade, the renor- 

malization scheme we use is designed to leave the Coulombic interaction term He un- 

changed. After wave-vectors between the original wave-vector cutoff A and the new 

wave-vector cutoff A/& (where b > 1) have been integrated out, the theory is re-scaled 

by writing it in terms of a new set of wave-vectors kf, = bk. In variance of He is achieved 

by re-scaling the fermion creation and annihilation operators as well: cL a = b~xl2Cjka. 

[One might prefer to say that the coherent-state Grassman variables that correspond 

to the operators are re-scaled (see Ref. [97]).] The effect of renormalization upon the 

parameters (hvp/6), U2, and v{hvp/8) of Eq. 3.62 is as follows: 

hvp 
-11 

k-i hvp 
s 

[u2]' = u2, 

[v(hvF/6)}'   =   6"1 [v(hvF/S)] . (3.66) 

The backscattering HB is revealed to be dangerously irrelevant. Though it scales like 

an irrelevant term, we cannot safely set it to zero as we know from Eq. 3.35 that the 

energy shift is singular as v —► 0. 

In addition to rescaling the terms in the original Hamiltonian, renormalization gen- 

erates terms of its own. It is not hard to see that all but the new backscattering terms 



112 Chapter 3: Subleading Results for the Coupled-Dot Blockade 

are irrelevant. The original Hamiltonian consists of the kinetic energy HK, a two-body 

interaction HC2, a one-body interaction HCi, and a backscattering term HB- Ec2 and 

HC\ are normal-ordered operators given by the following formulas: 

^ '       it . io <Tl .(To "^ Jl J2 °1 ><T2 

X 
CJ2 ^4 °1 Cjl k2 0-1 CJl kl "1 CJ2 fa ^2 

(Ä4 - k3)(k2 - ki) 

Hci = -M^YZrfaj^jgg. 
X    In 

3      v 

A - ki |    ,   | A - k2 

A + ki\ \A + k ■2 

lnTTlf     • (3-67) 

where A = W/hvF. HC2, Hci, and HB can be represented by Feynman graphs [see 

Fig. 3.3(a)], which can then be connected to construct the terms that renormalization 

adds to the Hamiltonian. As usual, the internal lines of the second-generation graphs 

carry only high-energy momenta which lie within the shell of wave-vectors that are 

integrated out. 

Given such rules for constructing the second-generation terms, one can deduce that, 

whenever one creates a new term by connecting lines emanating from the HC2 and HCi 

graphs [see Fig. 3.3(b) for examples], one picks up a scaling factor of 6"1. For example, 

diagram 2 of Fig. 3.3(b) represents a two-body interaction produced by contracting one 

HC2 with one HCi. This new interaction term is similar to HC2 except that the denom- 

inator contains only one power of {k4-k3) or (k2 -kx) and, consequently, is less singular 

than Hc2, which is fixed under rescaling. Thus, the second-generation term must shrink 

under renormalization. Indeed, all such graphs formed from contracting the Coulombic 

interaction terms are similarly irrelevant and scale to zero under renormalization. They 

can be ignored in the effective theory. We should expect this result. Otherwise, our 

Coulomb-blockade model would probably never have been useful at all. 

As for graphs that involve the backscattering term HB [see Fig. 3.3(c)], we need 

only consider these to order v2, for we go no further in calculating f(g).  Depending 
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Figure 3.3: Feynman diagrams for integrating out single-particle energies a distance 
greater than W' from the Fermi surface in the fermionic version of the strong-coupling 
theory, (a) The three building-block Feynman graphs. Diagram 1 corresponds to the 
two-body Coulomb interaction Rci- Diagram 2 corresponds to the one-body Coulomb 
term Hc\- Diagram 3 represents the backscattering HB- (b) Second-generation m-body 
graphs constructed by contracting Hc2^ and .ffci's. These terms are all irrelevant to 
the low-energy theory, scaling to zero under renormalization. (c) Second-generation 
graphs formed from combinations of HB , Hc2 ■> and Hex • Terms such as diagram 1 that 
contain an even number of HB'S are irrelevant under renormalization. Diagrams 2 and 
3 involve odd numbers of ifß's and are therefore dangerously irrelevant. Nevertheless, 
they are negligible in size compared to corresponding low-energy graphs and therefore 
can be safely discarded, (d) An example of a closed diagram used to calculate the 
contribution to the energy shift from the degrees of freedom that correspond to single- 
particle energies more than W from the Fermi surface. 
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upon how many Coulombic interaction terms are introduced, the second-generation 

graphs that contain HB all scale down by at least a factor of 6"1. Consequently, all but 

those which contribute to low-energy backscattering are irrelevant. Thus, we can drop 

graphs such as diagram 1 of Fig. 3.3(c) that contain an even number of HBh. Graphs 

containing an odd number of HB's are dangerously irrelevant but can ultimately be 

ignored because they are negligible compared to the corresponding graphs that can be 

constructed from the low-energy portions of the original HC2, #ci, and HB. Diagrams 

2 and 3 of Fig. 3.3(c), for example, are of order v(U2/W). If we had renormalized down 

to W", where U2 < W" < W, we would have found the corresponding graphs to be 

of order v(U2/W"). The contribution from energies above W is therefore seen to be 

merely perturbative in relation to the contribution from energies between W" and W. 

The conclusion is that we can drop the parts of the graphs produced by integrating 

over energies greater than W. Returning to our original renormalization down to W, 

we see that the graphs produced here have been shown to be negligible. The argument 

that the symmetrizing renormalization does not cause any significant changes in the 

low-energy Hamiltonian is complete. 

Having disposed of the concern that the process of symmetrization might leave 

us with important new low-energy terms, we now show that any constant terms pro- 

duced are similarly insignificant. Such constant terms correspond to closed diagrams 

constructed from the original Feynman graphs. Since all lines are internal, they all 

represent the propagation of high-energy excitations. There are obviously an infinite 

number of closed diagrams. Fortunately, we can limit our attention to a certain sub- 

set. We need not concern ourselves with diagrams involving less than two HC\ graphs: 

diagrams with only one HC\ graph must sum to zero as A(p) is even in p; diagrams 

with zero HC\ graphs cannot contribute to the differential energy shift 6A. Similarly, 

in any pertinent closed graph, HB must appear a nonzero and even number of times. 

It cannot be absent as terms that do not include it shift all relevant ground-state ener- 
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gies equally and are therefore unimportant. Furthermore, in any closed graph, it must 

appear an even number of times because HB is the only term that exchanges right- 

and left-movers. Thus, all the diagrams we need consider consist of a nonzero and even 

number of -ffs's, at least two Hci's, and an arbitrary number of Hc2^ [see Fig. 3.3(d) 

for a canonical example]. 

Each such diagram corresponds to a number of time-ordered terms in Rayleigh- 

Schrödinger perturbation theory.   For a Feynman diagram with r internal lines, the 

associated Rayleigh-Schrödinger terms have r integrations over momenta and (r — 1) 

propagators with denominators linear in the momenta. If the Hci graph appears m,2 

times in the Feynman diagram and the Hex graph appears mi times, there are m = 

(2m,2 + mi) > 2 additional denominators linear in the momenta, which have their 

origin in the wave-vector denominator of n (recall Eqs. 3.63 and 3.67). The propagator 

denominators are always on the order of W or greater. The h denominators are of the 

form (k — k'), where k and k' are both in the high-energy wave-vector shell. Thus, these 

denominators can go to zero.  However, the contribution from the regions where they 

become zero is negligible, the somewhat simplified explanation being that, when one of 

them goes to zero, the rest of the integrand can be treated as essentially constant, and 

we have 

^ TA' dk I"       „fhvFk\]      „, , VLT[1+0M\=0(C)- 
where A' = W'/hvp and the constant e<l. It follows that contributions to the overall 

result only come when the n denominators are themselves of order W'/hvp. 

As a result, what remains is a nonsingular integration over r momenta of an integrand 

that is proportional to [&i.. ■ kir_1+m\]~1, where the k{ are linear in the momenta over 

which we integrate. Noting that the only other momentum dependence comes from the 

logarithmic term of Hex-, we see that, in energy units, the result of the integration is of 

order (1/W')m_1. We now multiply the result of our integration by the various factors 

of XJ-ii v, and 6 that stand aside the integral. For a closed diagram in which HB, -HC2> 
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and HC\ appear j,m2, and m1 times, respectively, the contribution to the energy shift 

is readily seen to be of order U2(v/6)2\U2/W')m-\ where m = (2m2 + mx) > 2. As 

(U2/W) < 1 and the overall energy shift is of order U2, these terms are negligible. 

Thus, at least to order v2, integrating out all particle and hole excitations at dis- 

tances greater than W/2 from the Fermi surface produces neither relevant new terms 

in the low-energy Hamiltonian nor significant constant contributions to the differential 

energy shift. As what remains is a fermionic theory at half fining, the result for f(g) in 

Sec. 3.3 is unaffected by possible "high-energy" deviations from this condition, an im- 

portant property if we wish to compare our predictions with empirical data. We would 

hope that a similarly universal solution for f(g) could be found to higher orders in 

(1-5). However, if the formula for the interdot conductance (recall Eq. 3.64) is correct 

to some non-leading order, such overall independence of the filling fraction must—as 

in the weak-coupling limit—come through canceUation of the separate filling-fraction 

dependences of the conductance and the energy shift when one is expressed in terms 

of the other. If this were shown to be true, we would see once again that the interdot 

conductance g and not the bare matrix element for tunneling or reflection is the correct 

parameter to achieve a universal description of the coupling dependence of a double-dot 

Coulomb blockade. 

3.5    Conclusion 

The present chapter substantially improves upon the results of Chapter 2 for the 

Coulomb-blockade peak splitting of two coupled quantum dots [51, 53, 54] and thereby 

makes an important contribution to the growing body of theoretical and experimental 

work on such coupled-dot systems [19, 43, 44, 45, 47, 48, 64, 65, 66, 87, 88, 89, 90, 91, 

92, 93, 94]. By extending the weak-coupling theory to second order in g for arbitrary 

Nch, it has shown how the positive curvature with respect to g that is characteristic of 

the peak splitting for smaU N& crosses over to the negative curvature characteristic of 
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large N& as the number of channels is increased through N& « 10. Furthermore, it 

has demonstrated that, at least for the leading two terms in the weak-coupling theory, 

the channel conductance g is the "correct" parameter to use in constructing a theory 

for the peak splitting that is universal in the sense that it is does not depend on the 

high-energy band structure. Finally, this chapter has made the JVd, = 2 theory both 

stronger and broader—broader in that the subleading term is calculated; stronger in 

that the leading and subleading terms for strong-coupling are confirmed to be insensi- 

tive to the manner in which the high-energy cutoff is taken. Thus, the chapter has made 

more plausible efforts to connect weak- and strong-coupling behaviors and to compare 

theoretical results with the data from recent two-channel experiments [19, 43, 44, 48]. 
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Chapter 4 

Corrections for a Finite Barrier 

4.1    Introduction 

The opening of tunneling channels between two quantum dots leads to a transition 

from a Coulomb blockade characteristic of isolated dots to one characteristic of a single 

large composite dot [8, 13, 14, 15, 21]. For a pair of electrostatically identical quantum 

dots characterized by charging energies U much greater than their single-particle level 

spacings 62D, this transformation can be chronicled by tracking the splitting of the 

Coulomb blockade conductance peaks as a function of the conductance through the 

interdot tunneling channels [19, 43, 44, 45, 46]. If one assumes a single common value 

for the conductance in each tunneling channel (an assumption that is exactly fulfilled 

for a spin-symmetric system of only two channels, one for spin-up electrons and the 

other for spin-down electrons), one can divide the peak splitting by its saturation value 

and look for the relation between two dimensionless quantities [51, 52]: the fractional 

peak splitting / and the dimensionless channel conductance g [99]. 

For g <C 1, Chapters 2 and 3 have treated the coupled-dot problem via a "transfer- 

Hamiltonian approach" [100], in which states localized on one dot are connected to 

those localized on the other by hopping matrix elements. (Here localized signifies that 
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a state is entirely restricted to one of the two dots.) The hopping matrix elements have 

been treated as constant, independent of the states connected, as they would be if the 

interdot barrier were a delta-function potential, having infinite height and zero width. 

For such a barrier, the leading small-5 behavior of the fractional peak splitting is given 

by 

4=0 = -^rXchg, (4.1) 

■ where N& is the number of separate tunneling modes (spin-up and spin-down channels 

are counted separately). The superscript of /g, teUs us that this is the leading term 

in the weak-coupling limit. The subscript further specifies that this term is calculated 

for a tunneling barrier of effectively zero width (£ = 0) and therefore, by imputation, of 

infinite height. For g > 0.2, subleading terms, which are higher-order in g, contribute 

significantly to the zero-width peak splitting, and the first set of these, which consists 

of terms proportional to g2, has been calculated in Chapter 3. 

In this chapter, we calculate a different correction to the £ = 0, first-order in g 

result which arises from the fact that a realistic barrier possesses a finite height V0 and 

a nonzero width £. For such a realistic barrier, the hopping matrix elements that move 

electrons between the dots are not independent of the states they connect, and, for small 

g, they depend exponentially on the energies of the states. As a result of this exponential 

dependence, in the weak-coupling (g < 1) limit, it can pay to tunnel to intermediate 

states with energies above the barrier, and the leading term in the fractional peak 

splitting then behaves as (U/W)/\ lng\, where U is the interdot charging energy, which 

measures the capacitive energy cost of moving electrons between the dots, and W is the 

characteristic energy scale over which the hopping matrix elements change from their 

values at the Fermi energy Ep. 

We examine specifically the case of a finite-width interdot barrier that can be treated 

as parabolic near its peak. We find that, for such a barrier, the energy scale W is 

equal to hujI-K, where u is the harmonic oscillator frequency of the inverted parabolic 
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well. This frequency is proportional to the square root of the barrier curvature, which 

is proportional to Vb/£2. It follows that the limit £ -*• 0 corresponds to the limit 

U/W —► 0. For £ ^ 0, on the other hand, it is not always true that U/W <C 1. In fact, 

in recent experiments by Waugh et al. [19, 43, 44], Crouch et al. [45], and Livermore et 

al. [46], it appears that U/W is roughly 1. Under such circumstances, we find that, for 

a given small value of the channel conductance (g <C 1), the fractional peak splitting / 

is larger than the zero-width splitting, /^=o, by a small but noticeable amount, and, in 

the extreme limit of g —»■ 0, the ratio of the finite-width peak splitting to the previously 

calculated zero-width peak splitting becomes very large. For intermediate values of g, 

on the other hand, the primary effect is a small increase in / accompanied by a reduction 

of the slope of the /-versus-«? curve. 

To find the leading term in the finite-width fractional peak splitting we adopt a 

stationary-state approach [100], in which the first step is to solve for the single-particle 

eigenstates of non-interacting electrons moving in the electrostatic potential of the cou- 

pled dots. The capacitive interactions between the electrons are then expressed in 

terms of these non-interacting double-dot eigenstates, and the off-diagonal elements of 

the interactions are treated perturbatively. The leading term in the finite-width frac- 

tional peak splitting, f^\ is determined by finding the value for p = 1 of a more 

general quantity f^\p), where p is a dimensionless parameter (defined by Eq. 4.2 be- 

low) which is a measure of the bias asymmetry between the dots [51, 52]. In the limit 

U/W —»■ 0, the zero-width result, nj0, is recovered. For finite U/W, an approximate 

analytic calculation demonstrates the limiting l/|lnp| behavior, which is confirmed by 

numerical results. For the particular choice U/W = 1, which corresponds to recent 

experiments [19, 43, 44, 45, 46], as well as for various other choices of the ratio U/W, 

the leading term in the fractional peak splitting is computed numerically as a function 

of g. It is confirmed that the condition £ ^ 0 leads to an upward shift of the peak 

splitting for weakly coupled dots (g <C 1). As g becomes larger, the effect of allowing 
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£ 7^ 0 becomes less dramatic, and, for U/W ~ 1, previous predictions for the fractional 

peak splitting at intermediate values of g are essentially unaltered. 

The structure of this chapter is as follows. Section 4.2 develops the stationary-state 

approach for calculating /(/>). Section 4.3 implements this approach for a parabolic 

interdot barrier, verifying the 1/| \ng\ behavior of the g -*■ 0 peak splitting that arises for 

£ 7^ 0 and putting the finite-width calculation in the context of earlier work. Section 4.4 

summarizes the results and comments on the possible effects of £ ^ 0 when the dots are 

strongly coupled (g ~ 1). 

4.2    The Stationary-State Approach 

In order to solve for f(p) via the stationary-state approach, we make the problem one- 

dimensional by considering a smooth, adiabatic interdot connection [see Fig. 4.1(a)] 

which, for simplicity, we presume to contain only one transverse orbital mode that lies 

near or below the Fermi energy EF [34]. (The use of one orbital mode corresponds to 

the spin-symmetric Nch = 2 experiments of Waugh et al. [19, 43, 44], Crouch et al. [45], 

and Livermore et al. [46].) For such a single orbital-mode connection, the only parts of 

an electron wavefunction that can pass from dot to dot are those that overlap with the 

lowest transverse mode. Hence, in investigating the effect of the interdot connection, we 

can ignore all electrons but those in this lowest mode. We are left with a one-dimensional 

problem in which a representative electron with single-particle energy E moves in an 

effective potential V(x) = EtT(x)+Vei(x), where EtT(x) is the spatially dependent energy 

of the lowest transverse mode and Vd(x) is the spatially dependent electrostatic energy. 

The characteristic length scale for the spatial variation of the effective potential is the 

barrier width £. 

After adding hard boundaries at a distance Ldot from the barrier, we have a "box- 

like" double-dot system with a smoothly varying longitudinal potential [see Fig. 4.1(b)]. 

Of course, a realistic double-dot system will not look entirely like this. The assumption 
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Figure 4.1: (a) Schematic diagram for a single orbital-mode connection between the 
two dots. Over a distance of order £, the connection narrows to a minimum width on 
the order of the Fermi wavelength AF- (b) "Box-like," ID double-dot system with a 
central barrier. Hard confining walls are located at a distance Ldot from the barrier. 
The barrier is characterized by its height Vb and half width £. 
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of adiabaticity will break down as the interdot channel widens, and disorder will then 

bring about a mixing of the various tranverse modes. However, so long as there is not a 

strong backscattering center in the vicinity of the connecting region, the breakdown of 

the adiabatic approximation will not significantly affect movement of particles between 

the dots—either with regard to the probability of transmission or with respect to the 

relevant phase shift upon passing through the barrier. Instead, in the large-dot limit in 

which the charging energy U is much greater than the two-dimensional dot level spacing 

<$2D, the primary effect of the failure of adiabaticity will be a mere redistribution of the 

scattered particles among the various transverse modes in the wider "plains" of the 

dots. The probability of a particle in the lowest transverse mode entering or exiting the 

interdot connecting region is unaffected by such an external redistribution. Thus, the 

details of the "boundary conditions" away from the connecting region are unimportant, 

and, so long as the connecting region itself is sufficiently smooth, we can, for simplicity, 

extend the adiabatic approximation to the distance Zdot, where hard boundaries are 

imposed to ensure the correct normalization within the one-dimensional channel [101]. 

Having arrived at our "box-like" model, we now concentrate on the Hamiltonian, 

which consists of two components. The first, H0, is a diagonal term that gives the ener- 

gies of the non-interacting, single-particle eigenstates, which form a discrete spectrum 

with an average level spacing proportional to hvF/Ldot near the Fermi surface, where 

vp is the Fermi velocity. The second, Hc, gives the capacitive energy cost of moving 

electrons from one side of the barrier to the other [51, 52]: 

HC = U(n - p/2)2, (4.2) 

Here, h counts the electrons transferred from dot 1 to dot 2 (assuming, for convenience, 

an even total number of electrons initially divided equally between the two dots). The 

dimensionless parameter p is a measure of the capacitively weighted bias and favors 

occupation of dot 2 when p > 0. (Note that U equals the quantity U2 of Chapters 2 

and 3.) 
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We need to solve for the dimensionless channel conductance g and the fractional peak 

splitting /. For the non-interacting electrons characterized by Ho, the dimensionless 

channel conductance g is simply the transmission probability for a particle incident 

on the barrier at the Fermi energy E-p [100]. / is not so easily determined because, 

in its evaluation, He is relevant. Thus, we must develop a means of dealing with h, 

which is not diagonal in the basis of non-interacting single-particle eigenstates that is 

the cornerstone of our approach. 

Our strategy is to switch to a basis that is simply related to the eigenstate basis 

but which renders h nearly diagonal at energies that are low compared to the barrier. 

We use the fact that, for a bound system containing two equal potential minima, the 

eigenstates come in well-defined, discrete pairs [102]. The states in these pairs have 

similar energies but opposite parities, the even-parity state having a lower energy than 

the odd-parity state. Thus, the non-interacting part of the Hamiltonian can be written 

in the form 

#o = Y. EsU)ch<r csj* + £ EAU)CAJ„ ZAio , (4.3) 

where S and A are the even and odd parity indices, j is the pair index, and a is the 

spin index (which might be more generally regarded as a channel index). 

At lower and lower energies relative to the barrier, the splitting within the pairs, 

\EA(J) - Es(j)\, approaches zero, but the spacing between pairs, \Es(j + 1) — EA(J)\, 

remains approximately equal to #ID, where SID = nhvp/Ldot (assuming we do not stray 

too far from the Fermi surface). It follows that, at low energies, one can form doublets 

of quasi-localized states—states that lie mostly on one of the two sides of the central 

barrier—from linear combinations of the symmetric and antisymmetric components of 

each eigenstate pair [102]. If <j>sj{^) and <f>Aj(x) are the symmetric and antisymmetric 

eigenfunctions of the jth lowest-energy pair (with appropriately chosen overall phases), 
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the recipe for the quasi-localized wavefunctions is 

%«(*) = j= [4>Sj(x) + (-l)a+1<ßAj(x)] , (4.4) 

where the dot index a signifies that üja(x) is primarily localized on the dot 1 side of 

the barrier if a = 1 and on the dot 2 side if a = 2. 

At high energies relative to the barrier, we cannot form quasi-localized wavefunctions 

from combinations of just two states.   Nevertheless, we continue to form the linear 

' combinations analogous to those of Eq. 4.4. We refer to the full set of states üja(x) 

as semi-localized to indicate that these states are sometimes quasi-localized (i.e., when 

they lie at low energies relative to the interdot barrier) and sometimes not. 

The semi-localized states constitute the complete and orthogonal basis that we need 

to render n nearly diagonal at low energies. Their simple relation to the double-dot 

eigenstates translates into an equally simple relation between the corresponding creation 

and annihilation operators. The semi-localized annihilation operators are given by 

ajaa = V2 ^CSJ° + (-1)a+lc^] ' (4-5) 

and the corresponding expression for H0 is 

Ho = J2 EU)a]**aJ™ - J2 *0')(ak*ii* + H.c.), (4.6) 
<^>«J <T,j 

where E{j) is the average energy of the pair and t(j) is half the energy difference within 

the pair: 

tu) = MIAMü. (4.7) 

It is important to note that, whereas E(j) is in general on the order of the Fermi 

energy, t(j) is no greater than the average level spacing <51D = xhvF/Ldot and becomes 

vanishingly small in the large-dot limit (Zdot -» oo). The minuteness oit(j) wiU permit 

us to ignore it in calculating the leading contribution to the fractional peak splitting. 
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We now write n in terms of the semi-localized operators. If dot 1 corresponds to the 

x < 0 side of the barrier and dot 2 corresponds to the x > 0 side, we have 

n = | fdx [e(x) - e(-x)) i>\x)i>{x), (4.8) 

where tl>{x) is the position operator and 0(a;) is the Heaviside step function [103]. 

After writing iß(x) in terms of the semi-localized operators a,jaa, we see that h = 

ho + She + Shy, where no corresponds to the h we would have if the semi-localized states 

were truly localized, She is the part of Sh = (n — ho) that does not transfer electrons 

from dot 1 to dot 2, and Shf is the part of Sh that does effect such a transfer: 

no   =    /    -—zr—oi a (-i)y 
o,a,3 

(-1)« 
2 

B(j2, a; ji, a) J-Sh ,h aj2acraho'C-> She  =    J2 

6hT   =      Y2   BU2,ä\ji.,a)a]2Öi(7ahcia. (4.9) 

Here, ä means "not a" and 

1    fLdot 
5(j2,a2;j1,a1)    =    -J       dx  [(-l)ai+1<l>*sh(x)^(x) 

+ (-ir+1ct>*Ah(x)<t>Sh(x)].     (4.10) 

We have obtained the desired "semi-diagonal" form of h. Using Sh = She + ^T and 

assuming that g is small, we express the Hamiltonian in terms of one non-perturbative 

piece, HQ, and two perturbative pieces, H^ and H'c: 

H0   =    J2E(j)a}a(TajaiT + U(ho-p/2)2, 

H'T    =    -^t(i)(at2ffail<r + H.c.), 
<r,j 

H'c   =   U(h0-p/2)Sh+USh{h0-p/2)+U(Sh)2. (4.11) 

As in Chapters 2 and 3, the fractional peak splitting is determined from f(p), where 

?M=m__m (4,2) 
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and A(p) is the energy shift of the ground state of E'0 due to the perturbations H{ 

and H'c for the given value of p, where 0 < p < 1 and the total number of particles in 

the double-dot system is even. The quantity limp_>i f(p) equals the fractional peak 

splitting /. 

Eq. 4.12 tells us that we are only interested in relative energy shifts. Consequently, 

we can ignore terms such as (0|*7(<5n)2|0) that are independent of p. (Here the brackets 

indicate an expectation value taken in the ground state of H'Q.) Another set of irrevelant 

terms are those of the form (0\U(ho - p/2)6n\0), which are zero due to the symmetry of 

the ground state with respect to interchange of the two dots. Finally, terms that contain 

#T are also negligible because t(j) goes to zero with the reciprocal of the system size 

and, unlike Sh, H^ only connects each state to one other, rather than connecting each 

state to a manifold of others (see Chapter 2 for a similar situation with regard to odd 

orders in the transfer-Hamiltonian perturbation theory). After the above terms are 

omitted, it is apparent that the leading perturbative energy shift comes from the term 

that is second order in H'c. To lowest order in 6h, this term is 

A(>\p) = -U>(o\6nP0p^A--P06n 
2 

0), (4.13) 

where E'0(p) is the energy of the ground state of H'0 and where P0 is the operator that 

projects out the unperturbed ground state. A^2\p) can easily be seen to consist of 

two distinct parts: a term second-order in 6nc, which involves hopping between states 

semi-localized on the same dot, and a term second-order in Shj, which involves hopping 

between states on different dots. 

With Eq. 4.13, we have completed our tour of how to use the stationary-state ap- 

proach to find both the interdot channel conductance g and the fractional peak splitting 

/. In order to progress further, we must adopt a model for the barrier that gives the 

energy dependence of the elements of 6n (recall Eqs. 4.9 and 4.10). 
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4.3    Splitting and Conductance for a Parabolic Barrier 

We assume that the barrier in the interdot tunneling channel can be reasonably modeled 

by a parabolic one. For an energy barrier with peak height Vo, such a model is plausible 

when Vo ^ -EF > U, which is the regime of experimental interest [104]. The formula 

for a parabolic potential V(x) centered at the origin with half width £ is the following: 

, x      f Fo (l - £)   if \x\ < x/2£ 
V(x) =1        V       WJ (4.14) 

I   0 otherwise. 

A crucial energy scale for this barrier is the harmonic oscillator frequency u of the 

inverted parabolic well. This frequency is given by the formula 

fc=(^)w (4'15) 

where 2x/\v = y/2mVo/h2 and m is the effective mass of the electron. 

The problem of transmission through and reflection from a parabolic barrier is 

well known and exactly solvable [105, 106]. The solutions are parabolic cylinder func- 

tions [107], and the dimensionless channel conductance is given by [106, 108] 

9=  1 + e-2«y(EF)> (4-16) 

where Ep is the Fermi energy and 

From these equations, it follows that 

y(E) = ^- (4-17) 

(V0-EF)        1       (\-g\ 
= ^ln   -T*    . (4-18) 

and, for J<1, 

tiw 2w     \    g 

(V0-EF) 1       /Ay 

Vo 2TT
2
V2 

(y)|ln*|. (4-19) 
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Equation 4.19 tells us that, even for experimental systems [19, 43, 44, 45] in which 

£ is quite, small (£ ~ AF), EF is close to V0 for |lnfirj < 2TT
2
\/2. Thus, the assump- 

tion of a parabolic barrier appears reasonable for any measurable value of the interdot 

conductance. 

We now consider the sizes of the various energies that appear in our peak split- 

ting calculations. Equation 4.16 indicates that the energy scale W for the variation of 

transmission probabilities is hojI-K. Recalling our discussion in Sec. 4.1, we have 

U      2irU 
w = l^- (4-2°) 

As observed in Chapter 2 and other previous work [45, 51], for symmetric dots, U equals 

e2/(Cs + 2Cint), where Cs is the total capacitance of one of the two dots and Cint is 

the interdot capacitance. The energy scale hw is, by comparison, only roughly known. 

From the fact that the barrier height V0 is approximately equal to EF, we know that 

Ay ~ AF. For £, we can use the "device resolution" d, which is the distance between 

the surface metallic gates and the two-dimensional electron gas (2DEG) and is typically 

on the order of 100 nm. The fact that the approximation £ ~ d should be accurate 

safely within a factor of 2 can be surmised from calculations such as that of Davies and 

Nixon [109] in which they show that the potential profile induced in a 2DEG by a narrow 

line gate has a half width at half maximum that is approximately equal to d [110, 111]. 

In the AlGaAs/GaAs heterostructures of Waugh et al., Crouch et al, and Livermore et 

al. [19, 43, 44, 45, 46], where d is fairly small, about 50 nm (approximately one Fermi 

wavelength), further circumstantial evidence for £ ~ d comes from the fact that the 

space between the gates that form the interdot barrier is about 100 nm (see Chapter 2). 

It follows that, for these experimental systems, ho is approximately 0.2EF. On the 

other hand, U is about 0.03£F, and, therefore, to within a factor of 2, 2-KU/hu ~ 1. 

For different systems in which the Fermi wavelength is still about 50 nm but the gates 

are further from the 2DEG [93, 112], the ratio 2icU/hu> is presumably even larger. 

Consequently, we expect it to be quite generally true that the ratio U/W = 2irU/hu is 
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greater than or approximately equal to 1. 

On the other hand, since, in the sorts of experimental situations with which we are 

primarily concerned [19, 43, 44, 45, 46], both W/Ep and U/E-p are much less than 1, we 

are justified in linearizing the single-particle energy spectrum about the Fermi surface, 

taking E(j) = EF + hvp[k(j) - kF], where k(j) = y/2mE(j)/h2. 

We must now calculate \B(J2,a>2]ji,a1)\ when j\ ^ j2. We avail ourselves of the 

exact, real solutions for the wavefunctions <f>pj(x) in the presence of a parabolic poten- 

tial [106,107] (P is the parity index, which we set equal to 0 for symmetric wavefunctions 

and 1 for antisymmetric wavefunctions). Connecting these to the corresponding sinu- 

soids, we find that, for x > y/2£ and Zdot ~> £, the eigenfunctions are approximately 

given by 

(_l)P 
<t>Pj(x) = hr= ™s[k(yPj)(x - V20 + lP{yPj)], (4.21) 

V-^dot 

where ypj = y(Epj) and k(ypj) = ^2mEp(j)/h2. The hard-wall boundary condition 

then demands that there be an integer n such that the quantity in brackets equals 

(2n + 1)TT/2 when x = Zdot- 

As for the phase jp(y) itself, it can be written in the following general form: 

lP{y) = {-l)pR{y) + D{y)y (4.22) 

If the connection to the sinusoids is made using the leading large-a; forms for the 

parabolic cylinder functions [106, 107], R(y) and D(y) are given by 

R(y)    =    - arctan^), 

D(y)   =    ^[argr(l/2-iy) + yln(47r>^/Av)] + 2?o, (4.23) 

where Do is independent of y. 

Returning to Eq. 4.10, we find that, if we restrict the integral to x > -v/2f, we have 

,   „   (     r+1 sm[D(y2) - D(yi)) cos[R(y2) + R(Vl)] 
V     ' 2(*2-fc1)Zdot 

B'  ~  ( i)°+i «^(ga)~ J(»i)] MR(V2) + R(yi)} ^ (424) 
2(k2 - kx)L&ot 
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where the bar of B' indicates that this is the term that moves electrons from dot a 

to dot ä and we have anticipated a continuum limit in replacing yPj and k(yPj) by 

Vj = y[E(j)] and kt = k(yj). 

In the calculation of B' and B', we have neglected the integration over the region 

\x\ < y/2£. The results can therefore be expected to involve errors of order £/Zdot when 

compared to the actual values of B and B. For B', this is not too much of a concern 

since, when both k2 and ki approach the Fermi energy, the numerator of B' goes to 

i/tf and the denominator goes to zero. Thus, for non-infinitesimal g, if we restrict our 

wave-vectors to a range about the Fermi surface such that \ki-kF\ < l/£ (in which case 

cos[D(y2) - D(y1)] can be approximated by 1), corrections to B' should be relatively 

small. 

In contrast, the term B' is a bit more problematic, for its numerator goes to zero 

as (k2 - h)£. Consequently, near the Fermi surface this term is of the order of the 

error, and to obtain a reliable result we must complete the integral numerically, using 

the parabolic cylinder functions in place of our sinusoids when \x\ < \/2£. We then 

find that the form for B' approximates the magnitude of the actual value of B if, after 

approximating cos[R(y2) + R(Vl)] by 1, we replace [D{y2) - D(Vl)] with K(y2 - Vl), 

where K ~ 0.1 for g ~ 0.1 and K -> 0 as g -> 0. Our conclusion is that 

B ~ ( n°+i sin[K(y2 ~ ft)] 
^     ;       2(*2-*1)Zdot' 

2(fc2 - AijXdot v       ' 

We can now calculate the leading parts of the energy shift A(p). The contribution 

from hopping between states on the same dot is given approximately by 

(4.26) 

where the j/.-'s are now measured relative to yF (i.e., y{ -> y{ + yF). The contribution 
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from hopping between the dots obeys 

A(2),       _      N^U2  f°   dki fAi dk2 sm^RjhvFh/tuj) + Rjhvpk^hu)] 
Ar {P)   ~ 4     y_A3 7T I     x (k2 - k,r 

*{i»M% + u(i-P) + ^-*}w 
where R(y) = R[y(Ep)+y] and the bracketed expression p —» —p stands for the quantity 

obtained by replacing p by —p in the previous term. In Eqs. 4.26 and 4.27, ultraviolet 

cutoffs Yr and Ar have been inserted in recognition of the fact that our formulas for the 

integrands break down at some distance YT or Ar from the Fermi surface. 
(2) 

For the same-dot-hopping shift A^ , the presence of such cutoffs is essentially irrel- 

evant since we find this term to be effectively negligible no matter what the choice of 

Yr. In particular, even when the cutoffs are taken to infinity, this segment of the energy 

shift produces a contribution to f(p) (recall Eq. 4.12) that is bounded by the following 

formula: 

The real contribution is perhaps substantially smaller than the bound because the in- 

tegrand of Eq. 4.26 is systematically too large for the infinitesimal-transmission states 

that correspond to \yi\ > 1. 

In any case, it is clear that the contribution to f(p) from same-dot hopping is 

essentially negligible. For N& < 2 and {ZitU/huj) < 10, fc(p) is extremely small and 

essentially constant in g. Under such circumstances, it does not significantly affect even 

the quantitative results. When (2ftU/hu>) > 10, on the other hand, it can be relatively 

large. Nevertheless, it remains unimportant, for in this regime we can only obtain 

qualitatively good results for the value of A^'(/9), and, qualitatively, the upward shift 

of f(p) induced by same-dot hopping merely reinforces the effect from hopping between 

the dots. 

We now consider the cutoffs Ar and their impact upon our understanding of the 

interdot-hopping result.  Since the integrand in Eq. 4.27 is reliably precise only when 
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ki and k2 are within l/£ of kF, the ultraviolet cutoffs should be chosen such that 

Ar ~ l/£. It follows that, to capture with quantitative precision the leading behavior 

of the peak splitting for g < 1, the set of wave-vectors within l/£ of the Fermi surface 

should encompass the range of energies in which the quantity R(E) is rapidly growing. 

Consequently, the set of wave-vectors must extend at least to kF+k0, where .E(jfeF+jfe0) = 

V0. From Eq. 4.18, we see that the identity k0 = (V0 - EF)/hvF yields 

If we require that k0£ < 1, we see that, for g < 1, we must have | ln^| < 2ity/2. Thus, 

we have a lower bound on the values of g for which our approximations are reliable. 

Fortunately, the lower bound is very small, and the requirement is only that g > 10~4. 

We are now prepared to calculate A^\p). After a switch to the dimensionless 

variables xr = (-l)rhvFkr/U, Eq. 4.27 reduces to 

A(2)/  *    „       ^ch^   P1 ,     p , f(x1,x2) ArW = "i^rn^^V?w + ^^ (4-30) 

where Xr = HvFAr/U, the symbol 3 signifies equality modulo terms that are indepen- 

dent of p, and the quantity f(x1,x2) is given by 

f(x1,x2) = sm2[R(Ux2/tuv) + R{-Ux1/hjj)]. (4.31) 

To obtain a result with negligible dependence on the cutoffs Xr, we must have Xr > 1. 

On the other hand, to ensure that the answer is quantitatively reliable, we need Ar < 1/f 

or, equivalents, Xr < hvp/U^. Thus, as promised, we can only expect Eq. 4.30 to 

give quantitatively reliable results for U < hvF/£; i.e., for 2irU/Hu> < 27rv
/2, where 

271-^/2 ~ 9. 

Having dealt with the issue of the ultraviolet cutoffs, we can now go about the 

business of evaluating the right side of Eq. 4.30. From the identity T(0,0) = g, it 

follows that the limit 2wV'/hu -»• 0 yields the zero-width (£ = 0) linear-in-5 equation for 

A(2)(/>) that was previously derived via a transfer-Hamiltonian approach [51, 52, 53, 54]. 
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In contrast, in the limit 2-KU/HU; —> oo, the energy shift given by Eq. 4.30 is independent 

of the interdot conductance for g a finite distance from both 0 and 1. The constancy of 

the shift follows from the fact that, except when g equals 0 or 1, T(xi,x2) is always 0.5 

within the bounds of integration, and the relevant parts of the energy shift are therefore 

the same as for (2irU/hu>) = 0 and g = 0.5. It should be re-emphasized, however, 

that such a result for the limit 2irU/hüJ —>■ oo can only be expected to be qualitatively 

correct. 

What happens when the barrier width £ is between 0 and oo? By performing two 

partial integrations of the righthand side of Eq. 4.30 and dropping terms that go to zero 

as the cutoffs Ar become infinite, we find that 

P\p)   =    ^(l-p)ln(l-/0 

T2    JO 

df(Xl,0) s' h{p,xuQ) 

rx2 
+ ^ /    dx2 

Ad, / 
7T2   l 

dx\ 

df(0,x2) 
h(p,0,x2) 

dx2 

■K2
 J0 J0 dxxdx2 

+ \P-+-P\, (4-32) 

where h(p,xi,x2) = (x2 + x\ + 1 — p)ln(x2 + xi + 1 — p). The first term on the righthand 

side of Eq. 4.32 is the zero-width result. The other terms, which go to zero in the limit 

£ —*• 0, are the corrections due to a nonzero width. 

Numerical evaluations of Eq. 4.32 are plotted in Fig. 4.2(a) for several values of 

the parameter 2irU/fuv in addition to the analytically derived results for the limits of 

zero-width and infinite-width barriers. A curious feature of these curves is that the 

corrections to the zero-width behavior are antisymmetric about g = 0.5, a property 

that can be demonstrated by considering what happens to the integrands under the 

transformations g <-» (1 — g) and x\ <-»• x2. Though the antisymmetry is suggestive, it 

must be remembered that f(l\p) is only the leading term in a perturbative expansion 
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about 5 = 0. The small positive contribution to f(p) that comes from the formula 

for the same-dot-hopping shift Aj.2) breaks this antisymmetry, and other higher-order 

corrections are likely to do the same. Nevertheless, some sort of rough antisymmetry 

about g = 0.5 is probably preserved, for, just as we find that, at small g, f(p) is enhanced 

by hopping connections to states with large transmission amplitudes, so we can expect 

that, at large g, f(p) is diminished by the fact that many of the occupied states from 

which one hops have transmission probabilities that are less than g. 

Such musings aside, we can gain further insight into the nature of our result for 

f(1\p) by making a rough analytic approximation to the righthand side of Eq. 4.32. To 

do this, it is best to return to Eqs. 4.12 and 4.30 and to derive the equivalent expression 

/W(P) = aw riXl rd       t(x„x2)  
* JO Jo (X2 + Xi + l)(x2 + X1 + l-p)(x2 + X1 + l + py 

(4.33) 

We then postulate that, for small g, the magnitude of the f^\p) is largely determined 

by the portion of the integral that corresponds to x2 > x0, where x0 = hvFk0/U (recaU 

k0 from Eq. 4.29). For x2 in this range, f(x1,x2) is on the order of 1 and therefore 

much larger than f (0,0) when g < 1. We label this high-energy portion of the double 

integral as /£(/>). Since, in this part of the integral, f{xux2) varies relatively slowly 

between 0.15 and 0.5, we approximate it by a constant Cf, where we take Cf = 0.25. 

For x0 > 1, we can drop the p's that appear in the integrand of Eq. 4.33.  We then 

obtain 

r(i),  s AW»2 

From the identities / = /(l) and x0 = (Hu/2irU)hi[(l - g)/g], we conclude that 

f(i)      (N±\        ZvU/tiu 
Jhep~\47r2)nng\ + 2irU/hu;- (4-35) 

This rough approximation to the leading behavior of the fractional peak splitting is 

only valid when x0 > 1 and k0 < l/£. The condition on x0 is necessary to justify drop- 

ping the p's from the integrand in the high-energy portion of the double integral. The 
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Figure 4.2: (a) Plots of the leading 5 —► 0 term of /, the fractional peak splitting, as a 
function of g, the dimensionless interdot channel conductance. Each curve corresponds 
to a different value of the quantity 2wU/hu} (see legend on right). All curves are for the 
case of two interdot tunneling channels, N& = 2. The upward sloping solid line is the 
linear-in-<7 result that comes from considering an interdot barrier of effectively zero width 
{2-KU/hu = 0). The dashed and dot-dashed curves show the /-versus-^ dependence for 
finite-width barriers with 2wU/hu> taking on values from 0.5 to 32. The horizontal solid 
line gives the leading term in the fractional peak splitting for an infinite-width barrier 
(2irU/hu —>■ 00). The curves can only be expected to be quantitatively accurate when 
2-KU/HOJ <C 10. (b) /-versus-<7 results for the full domain of g when N& = 2. The solid 
lines are the complete zero-width results in the weak and strong-coupling limits. These 
results contain both leading and subleading terms.6 The plot for the leading zero-width 
term in the weak-coupling limit (g —► 0) is included as a dot-dashed curve. The small- 
dashed curve that extends from (g, f) = (0,0) to (g, f) = (1,1) is an interpolating curve 
that is derived from the zero-width results. The long-dashed line is the 2nU[tko = 1 
curve from Fig. 4.2(a). The stars, triangles, and squares symbolize different sets of 
experimental data [43, 44, 46], the squares being the most recent [46]. 
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condition on k0 validates the approximate values for the magnitudes of \A(j2, a2;ji, aj)| 

that we use throughout our calculation. The two restrictions together mean that the 

range of reliability for our approximation to f^J is given by 

-j—;$IM<2TIV2. (4.36) 

For 2rU/fuj ~ 1, our approximations are good for g between a couple tenths and a few 

ten-thousandths. 

It is instructive to compare our result for fjQ with the zero-width fractional peak 

splitting, /W,. From Eqs. 4.1 and 4.35, we see that, for 2vU/hu> = 1, the ratio f^p/&J0 

is about 0.6 when g = 0.1 and about 25 when g = 0.001. For very weak coupling 

(g < 0.1), the correction to the £ = 0 result is proportionately very large, and, as 

g -> 0, it dominates the behavior of the peak splitting. On the other hand, as g 

assumes more intermediate values (g ~ 0.1), the results for £ = 0 and f ^ 0 converge. 

A direct comparison of our results for /££ with the full numerical results for /(*), 

which are plotted in Fig. 4.2(a), confirms that f£Jp does indeed capture the essential 

/-versus-^ behavior, particularly as 2irU/hw becomes larger and the exponential en- 

hancement of the tunneling amplitudes becomes more important. The sharp increase 

in slope as g -+ 0 can now be understood as resulting from the fact that, in this limit, 

the high-energy portion of the. peak splitting is proportional to (2nU/fkj)/\lng\. This 

proportionality also explains why the increase in slope as g -*■ 0 becomes less dramatic 

as 2-KU/hu; decreases. The success of our rough analytic approximation supports the 

supposition that, for small g, a substantial portion of the peak splitting comes from 

tunneling into virtual states lying near or above the top of the barrier. 

Turning to Fig. 4.2(b), we now examine the significance of the calculated finite-width 

corrections in the context of what we know about the /-versus-^ curve in the entire range 

from g = 0 to g = 1, and we consider the implications of these corrections for the relevant 

experiments [19, 43, 44, 45, 46]. The long-dashed curve in Fig. 4.2(b) is the curve from 

Fig. 4.2(a) for the value 2KV'/fwj = 1, which we believe to be appropriate for the cited 
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experiments. The dot-dashed line is the leading-order-in-g, zero-width curve, which 

also appears in Fig. 4.2(a). The small-dashed curve in Fig. 4.2(b) is an interpolation for 

the entire zero-width /-versus-^ curve. This interpolation has been designed to match 

both the second-order-in-<7 calculation of the fractional peak splitting for weak coupling 

(g ~ 0) and also the two-term calculation for strong coupling (g ~ 1), which were 

obtained in Chapter 3 and are shown as solid curves in Fig. 4.2(b). The stars, triangles, 

and squares represent different sets of experimental data. 

For the particular value of 2TTU/HU that is illustrated in Fig. 4.2(b), we see that, 

although the finite-width correction to / changes the answer by a large factor in the 

region of small g, the correction is small on an absolute scale. The difference between 

the dashed curve and the dot-dashed curve never exceeds 0.02 and therefore causes 

only a small correction to the overall shape of the /-versus-^ curve. Qualitatively, the 

correction due to the finite thickness of the barrier is quite similar to adding a small 

constant to / near g = 0 and then decreasing the slope of the f-veisus-g curve at small 

g. This qualitative similarity follows from the fact that the region where / drops rapidly 

to zero, at very small g, is almost invisible in the plot. Consequently, the correction to 

the zero-width curve might be hard to distinguish from the effects of a small interdot 

capacitance, which have already been included in analyzing the data. We therefore 

conclude that introduction of the finite thickness correction has little effect on the 

agreement between theory and the existing experimental data, for which 2-KU/hu ~ 1. 

Nevertheless, such corrections may be important in future experiments. 

4.4    Conclusion 

By developing a new approach to the coupled-dot problem that relies upon the non- 

interacting, single-particle eigenstates of the full coupled-dot system, we solve for the 

leading correction to zero-width, weak-coupling results that were derived in Chapters 2 

and 3.   The nonzero barrier width £ and finite barrier height VQ mean that the off- 
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diagonal "hopping terms" vary exponentially with the energies of the states they con- 

nect. For a small interdot channel conductance (g < 1), the resulting enhancement of 

tunneling to "high-energy" states above the barrier leads to an increase in the magnitude 

of the fractional peak splitting / observed at a given value of g. For a parabolic barrier, 

the magnitude of this increase grows with the value of the ratio 2vU/hu, where U is the 

interdot charging energy and u is the frequency of the inverted parabolic well. Except 

in a very smaU region near g = 0 where / behaves like (2irU/thj)/\ lng\, the increase in 

/ is accompanied by a decrease in the slope of the /-versus-^ curve. The effect upon the 

overall shape of the /-versus-5 curve is not very substantial for experiments in which 

(2irU/tkj) ~ 1 but could be crucial in interpreting experiments involving significantly 

wider barriers. 

One might worry that the finite-width corrections to higher-order terms in the weak- 

coupling expansion could lead to a more dramatic alteration of the /-versus-^ curve. 

However, the corrections to such "large-fir" terms should be muted by the fact that, as 

g increases, there is less difference between tunneling amplitudes between states at the 

Fermi energy and tunneling amplitudes between a state at the Fermi energy and a state 

lying above the barrier. 

A more vital source of concern might be the treatment of the electron-electron 

interactions in the vicinity of the barrier. Clearly, the use of a sharp step function in 

the equation for ft (recall Eq. 4.8) is an artifice. A more realistic model would account for 

the fact that, though electrons in and about the interdot channel still repel one another 

locally, their interactions with the rest of the electrons in the system are screened by 

the surface gates. 

Finally, one might wonder whether higher-order corrections to / preserve at least 

a rough antisymmetry about g ~ 0.5. We have seen that the leading small-^ correc- 

tion, when directly extended to g = 1, changes sign and becomes negative for g > 0.5. 

Although a proper calculation of the behavior at such large values of g requires consider- 



4.4  Conclusion 141 

ation of higher-order diagrams, which we have neglected, we believe that the negativity 

of the correction to / at large values of g is a generally right physical feature. When g 

is large and the reflection probability at the Fermi energy is therefore small, the energy 

dependence of the reflection amplitude, for £ ^ 0, should lead to a decrease in / as a 

result of the enhanced reflection coefficient for occupied states lying below the barrier. 
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Appendix A 

Weak-Coupling Details 

As described in Chapter 3, the procedure in evaluating the fourth-order energy shift is 

to calculate the (iVch)2 and Nch terms separately. Calculation of the (iVdi)2 terms is 

facilitated by rewriting them in terms of two energy variables instead of four. Calcu- 

lation of the iVch terms is made easier by differentiating twice with respect to p while 

performing the integrations over energy and then integrating twice with respect to p at 

the end. Terms that are constant or linear with respect to p cancel in the final result, 

the relative energy shift (Ao — Ap), so we have not lost useful information as a result 

of the double differentiation. 

The "wrinkle" in these computations, the appearance of integrals of the form 

' x + A '/ Jo 

is resolved by Taylor-expanding the logarithm about (x + A) for (B — A) < \x + A\ and 

about (B - A) for (B — A) > \x + A\. For A < 0, one first breaks the integral into the 

intervals (0, \A\ — e) and (|A| + e,Rxß). After this, one proceeds as usual. The results 
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are 

R*ln(x + B) V I     dx 
Jo x + A ±ln2(i^ + A)-±ln2,4 

+ £ 
(-l)n+1 

n=\ 

B-A 

)"-( 

B-A 
R^ + A 

for 0 < (B - A) < A < (Riß + A), 

=    -ln2(W + A)-ln(B-A)lnA+lln2{B-A) + — 
6 

-E 
_iyi+i (-1) 

n=l 
+ B-A 

n*      l\B-AJ    '  \Rrp + Ay 

for 0< A < (B - A) < (Rxß + A), 

=   ln(B-A)[\n(R^ + A)-lnA] 

+ £ 
-1V+1 (-I) 

n=l 

ity + AV 
5-A B-A 

for 0 < A < (#V> + A) < (B - A), 

^ln2(Ri,-\A\)-]n(B + \A\)ln\A\ + ±]n2(B + \A\) + y 

,+fW_W  y   ^(-ir+i ( B + \A\y 
tin2\B + \A\J       jL.      n*      \ty-\A\) 

for  A < 0 < (B + \A\) < (RTJJ - \A\), 

ln(B + |A|)[ln(£V - |A|) - In |A|] 

\A\ y , ^(-ir+i (RTP-\A\Y 
^-^ n' +E ^n*\B+\A\/    ' ^     n>      \B + \A\ 

for A<Q<{Ri,-\A\)<(B + \A\).{k.l) 

These five integrals are all we need. In confirming that the solution for (B-A) < (Rrp + 

A) evolves continuously into that for (Rij> + A) < (B - A), it is useful to recognize [85] 



145 

that 

~     C-nn+1 7T2 

n=l 

Having equipped ourselves to smooth the "wrinkles," we can proceed with a fuller 

description of calculation of the fourth-order terms. The (Ach)2 calculation is reviewed 

first. An illustrative segment of the N<& calculation follows. 

In Chapter 3, it was remarked that each of the (AdJ2 terms could be written in 

terms of two energy variables (ej = €3 — €1, €4 — e2) instead of the original four. The 

"cost" of this conversion is the appearance of a nontrivial density of states: 

ftp ftp rW rW rW fW 
I    dei        de2       de3       dc4 h(e3 - €i,e4 - e2) = /    deiu(€i) l    denken) h(ei,eji), 

Jo JO Jtp       JtF Jo Jo 
(A.3) 

where v(e) is the density of states. For a system at or below half filling, 

1/(6) = I 

e for 0 < e < cp, 

eF for eF < e < (W - eF), (A.4) 

(W - e)        for (W - eF) < e < W. 

(We need not worry about a system above half filling as such as system can be mapped 

to one below half filling through an exchange of particles and holes.) 

Using the new variables 61 and en, we can sum the integrands for the (Ach)2 terms 

shown in Fig. 3.1 (the others are obtained by taking p —* — p). If we drop the common 

factor —Nch(t/6)4U2, the result is the following: 

.        =     z2  
tot fa + U2(l - p)]2[eii + U2(l - p)][ea + ei + U2(4 - 2p)] 

2 
+ [ei + U2(l - pW[en + U2(l + p)][€U + d]" (A'5) 

It is not hard to find relations such as 

rep rW 
/    dei u(ei) /    den ^(en)[/itot(ei, en, p) - htot(ei, en, 0)] = 0 

Jo Jtp 
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in the limit ip = W/U2 -»• oo. Accordingly, we need only calculate 

rtF rtp 

I    deiv(ei) I    deiiu(eii)htot(eheii,p). 
Jo Jo 

The process of evaluating this double integral is lengthy but straightforward. The only 

"wrinkles" that appear—integrals of the form of Eq. A.l—are no longer problematic. 

The end result is Eq. 3.9. 

We now move to consideration of the fourth-order terms linear in the number of 

conducting channels. Recall that the (iVch)
2 terms were added before the integrations 

over energy were performed. This order of tasks is reversed for the N^ terms, the 

computation of which revolves primarily about finding a favorable permutation of the 

operations of differentiating and integrating with respect to p, integrating with respect 

to the »th energy variable, and integrating by parts. Consequently, perhaps the best way 

to describe the derivation of the NA contribution is to walk through the computation 

of a single illustrative term. After seeing the methodology employed in calculating this 

term, the tireless reader should have little difficulty in computing the rest. 

The representative term we choose is that corresponding to diagram 2 of Fig. 3.1(b). 

This term involves an exchange of a pair of electrons and, consequently, picks up an 

"exchange" minus sign. The diagram depicts the following sequence of events: 

I. Electron 1 tunnels from dot 1 to dot 2, going from a single-particle state 

with kinetic energy ex to one with kinetic energy e3. The energy of the 

resulting double-dot state relative to that of the unperturbed ground state 

is [e3 - £i + U2{1 - p)]. 

II. Electron 2 tunnels from dot 1 to dot 2, going from a single-particle state with 

kinetic energy e2 to one with kinetic energy e4. The system's energy relative 

to the unperturbed ground state is now [e4 + e3 - e2 - fi + 2i72(2 - p)]. 

III. Electron 2 tunnels back to dot 1, settling into the initial single-particle state 

of Electron 1. The ensuing relative system energy is [e3 - e2 + U2(l - p)]. 
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IV. Electron 1 tunnels back to dot 1, settling into Electron 2's initial single- 

particle state. The unperturbed ground state has been recovered. 

With all the intermediate-state energies known, it is easy to write down the contri- 

bution to the fourth-order energy shift: 

M) <» = f4EEEf- h - (2 + u2(i - />)] 

1 K-A.6) [e4 + €3-e2-e1 + 2U2{2 - p)]     [e3 - ea + U2(l - p)Y 

The sums over e\ and e2 extend from 0 to the Fermi energy ep. Those for €3 and €4 go 

from ep to the bandwidth W. The sum over the channel index a results from the fact 

that Electrons 1 and 2 can share any one of the iVch tunneling channels. Though the 

formula contains such unphysical terms as that for which ei =62, such terms are down 

by factors of the level spacing 6 divided by FW or (1 — F)W, and their inclusion has 

no effect in the limit W/8 —»• 00. 

Accordingly, we can cease worrying about these terms, for we assume that 8 <C U2 <C W, 

a postulate that permits us to work in the continuum limit, replacing the sums in Eq. A.6 

by integrals: 

rW rW /t\   rep      ftF      rw     rw 

[63 - C2 + U2{1 - p)\ 

X n ,      ,nf1 „M(-A-7) [64 + e3 - e2 - ei + 2U2(2 - p)]     [c3 - «1 + U2(l - p)] 

These integrals can be rewritten in terms of dimensionless variables £; 

%i = < 
*%?*■   for  i = 1 or 2 Ü2 (A.8) 

^   for  i = 3 or 4 . U2 

,(4) With this choice of integration variables, it becomes clear that A}y   2(p) is linear in U2. 
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Specifically, we find that 

AiwO>)   =   NA(jj   U2xI(p,F^), 

I-FTP rFiP r(l-F)iP r{l-F)4, , 
I(p,F,i>)   =    /     dxj     dx2 dx3 * l 

Jo Jo Jo Jo 
dx4 

1 1 
[x3 + X2 + 1 - p] 

" [*4 + x3 + x2 + Xl + 2(2 - p)] * [x3 + Xl + l- p] • (A-9) 

All the shuffling of notatation still leaves us confronted with a quadruple integral. 

Opting to postpone a frontal assault, we try a sidestepping movement, computing the 

partial derivative with respect to p: 

rF4 [Fi, r(l-F)i, r(l-F)j> rFifr rFrl> r(\-F)il> f(l-F)^ / 
Ip= dxi /     dx2 / dx3 / dx4 ( 

^0 JO Jo Jo \ 
1 

+   2    i    '   ) 
[ ][ ]2[ ]    [ ][ ][ Y) ' 

(A.10) 
[ n}[} 

where the subscript p signifies that Ip is the partial derivative of / with respect to p and 

the brackets on the right-hand side of the equation have the same contents in the same 

order as those in Eq. A.9. As the third term in the integrand of Eq. A.10 differs from 

the first only by an exchange of the indices 1 and 2, we can drop the third term and 

double the first. When the enhanced first term is integrated by parts with respect to x2, 

the products are two triple-integral terms and a quadruple-integral term that exactly 

cancels the second term of Eq. A.10. With the definitions A0 = 0 and Ax = Fip, we 

have 

h   =   2£(-lW     dxj dx3 dx4J -i  
p=o Jo Jo Jo [x3 + Ap + 1 - p] 

 1  1 
X [xA + x3 + Xl + Ap + 2(2 -p)] X [x3 + Xl + 1 - p] "        (A'n) 

Having benefited once from differentiation with respect to p, we try it again. The 

second derivative of I with respect to p has the following form: 

fFtjj r(\-F)-4> r{\-F),l> 
IPP = 2 dxx dx3 dx4 

X        +        \        + 
Jo Jo Jo \[   ]2[   ][   ]       [   ][   ]2[ 

1 

][ ][ ]\ 
(A.12) 
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where the bracket contents correspond—in order of appearance— to those of Eq. A.11. 

Ipp lacks the convenient symmetry between first and third terms that was so handy 

before. Nevertheless, integration of the first term by parts with respect to x3 still helps. 

The triple integrals that result cancel the third term and half the middle term, leaving 

(_l)p+<? [F4> r(i-F)il> 
      '      A~ '--[,-4 J" = 2EEA 1B +1_pl *M     **4 p=0 9=0 Ap + Vq-r *■      PJO JO 

1 
X 

[x4 + x1 + Ap + Bg + 2(2 - p)][Xl + Bq + 1 - p] 
1 rFxjj f(l-F)4> r(l-F)iP -1 

+ 2V(-1)P /     dXl / dx3 / dx4 
 n JO Jo Jo p=0 .,«, „„ .,„ [x3 + Ap + l-p] 

X [xA + x3 + Xl + Ap + 2(2 - p)]2[x3 + X! + l-p] '       (A'13) 

where B0 = 0 and Bx = (1 - f)^. 

We now straightforwardly integrate over x4, using the relation 

1 1 
(x + a)(x + b)      b — a\x + a     x + bj' 

The result is that 

r     _    „v^y-*   (-iy+«+"+'     /-"»^ 14, + ^ + ^ + 3,+ 2(2-,»)] 

" "   i^A. + ^ + wi. ^vw 
11 (-l)P+V fF4> f{l-F)*l> 1 

+ 2VV A   
y n

)   o—/    dx! dx3-r -i , 
£o^AP + ^ + 3-/>io Jo 3[x3 + Ap + l-p] 

X V[x3 + a;i + l-p] ~ [13 + si + Ap + ß„ + 2(2 - p)]J ' ^   '    > 

Recalling Eq. A.l, we see that, as ip —>■ 00, the leading part of the first term in 

Eq. A.14 behaves like [In2 ip/(Ap+Bq + l—p)] and therefore goes to zero unless p = q = 0. 

The same is true for the second term—which upon integration over x\ will have a form 

like that of the first term.  Hence, we can eliminate the sums over p and q and, after 
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integrating the second term over xi, have 
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I„     = *J2(-iri   FtoM' + Br+W-p)] 
1-Ptd J° x + l-p 

tr-B-T'     "„.Üla^e-ii.      (A.15) 6~ Pfr£ Jo x + i-p v      ' 

We recognize that the second term is nontrivial only for r = 0 and apply Eq. A.l to 

do the remaining integrations over x. After dropping terms that go to zero as ij) -> oo, 

we arrive at the "final" formula for Ipp: 

Inn   =     j(i) + /(2) 

(S^)7^ = M[i-mHFi>)-lin\Fi>)+f^tn. _iyi+i  /     p    \n      ^2 

.*2     Vi -^ n=l N ' 

- ln([l - Jty) ln(l - p) - i ln2(3 - p) + ln(3 - p) ln(l - p) 

n=l N r/ 

for  F < (1 - F), 

=    |ln2([l-W-f;i^(i=i:)B-ln([l-Wln(l-p) 
n=l ^ ' 

n=l 

for  J1 > (1 - F); 

Before undoing the differentiations with respect to p, we pause to remark on the 

meaning that can be attached to the derivatives Ipp and Ip. The second derivative Ipp 

can be interpreted physically [after multiplication by NchU2(t/6)4] as reflecting a change 

in the effective differential charging energy £/eff = 2[d2E$i\p)/dp2]p=o, where E^\p) 
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is the ground-state energy as a function of p for a given value of the dimensionless 

channel conductance g. (One might choose to speak of an effective differential capaci- 

tance [67] Ceff = e2/2Uef[.) Similarly, up to a proportionality factor, the first derivative 

Ip can be understood as a tunneling-induced correction to an effective value for n (recall 

Eq. 3.11) [67, 72, 73]. 

What is desired here, however, is i" itself, I being proportional to contribution of 

diagram 2 to the fourth-order energy shift (recall Eq. A.9). Integrating Ipp twice with 

respect to p gives us / up to additive terms that are constant or linear with respect to 

P- 

rp rx\ 
I(p,F,ip) = a0 + a1p+      dxi       dx2Ipp(x2,F,ip). (A.17) 

Jo        Jo 

As mentioned in Chapter 3 and at the beginning of this appendix, the unknown terms 

(a0 + dip) are not relevant to our result. The a\p term is negligible due to the existence 

of the mirror image of diagram 2, in which the roles of dots 1 and 2 are exchanged. 

Such a switch of h\ and h2 is equivalent —in calculating energies—to taking p —► —p. 

Consequently, when the total fourth-order shift is calculated, the a\p in Eq. A.17 cancels 

with the — a\p from the mirror image. Likewise, the do part drops from the final result 

as we are only concerned with the difference between the energy shifts for arbitrary p 

and p = 0. 

The irrelevance of the ao and a\p terms tells us that we need only calculate / 

modulo terms constant or linear with respect to p. In other words, we need only find 

an equivalence class 

I(p,F,il>)*  f dXl [ 'dxiIpp^F,^), (A.18) 
Jo       Jo 

where the congruence symbol indicates equivalence up to additive terms that are con- 

stant or linear with respect to p. We are therefore free to drop any constant or linear 

terms that crop up on the right side of Eq. A.18. 
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Confident that we have figured out what we wish to do, we can return to the pedes- 

trian business of doing it. We observe that the p-dependent sum in Eq. A. 16 can be 

written in a more integrable form: 

^(-i)n+i fi-Py  _    " (-i)"+i fiy 

n=l 3-P 
Qj   + In 2[ln(l - p) - ln(3 - p) + In 3] 

Integration of 1$ and 1$ with respect to p gives 

2 ' 
=    -ln(l-p) ln([l - iy,)]n(Fr/>) - ±ln2(FV) + ]T 

_nn+i (-1> 

T+ES^-UJ +ln21n: 
n=l 

r 

+ \ ln2(l - p)[ln([l - F\$) - In 2] - ± J" dx l^- 

,    /•",   ln(3-z)ln(l-a;)     ,       /""     , W3- 
./o 1-a; 70 1- 

-*) 

+ /V tzn riX2 jiz^i) (_zi_+_j_\ 
Jo l-«i7o \3-a;2/ V1"^      3-z2/ 

for  F < (1 - F), 

1-F 

=    -InCl-p) 
n=l v ' 

+E 
(_l)"+i ny 
v     ;       '-      +In21n3 

n=l 
+ 

for  .F > (1 - F); 

(A.20) 
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i/(2) 
2 > L n=l 

-In21n3 

^[ln3(3 - p) - In3 3] - \ In 2[ln2(3 - p) - In2 3] 

1  ^     ln2(l - x) -I. " ,   ln(3-a:)ln(l-x) 
ax — -— - 

3 — x i 
-ln2/"'__ 

_ r^ i   r *alnf^(_±_+JL). (A.21) 

The ellipsis in the second equation for i), ' indicates that the remainder of Pp ' for the 

system above half filling is the same as the corresponding remainder for the system 

below or at half filling. 

In deriving Eqs. A.20 and A.21, we eliminated a number of integrals over a;,'s by 

using an identity [86] that is easily derived for double integrals: 

rp rxi rp 
/   dxi I    dx2f(x2) =  I   dx(p- x)f(x). 

Jo       Jo Jo 
(A.22) 

Nonetheless, in the final terms of rp ' and Ip ', double integrals remain. These can be 

reduced to single-integral form with a little extra work. Defining L^ to be the last 

term of {1/2)1),    , we discover that 

Jo \3-x2)\l-x2     3-x2)JX2    
XV       1-xJ 

= fd*K^)(i^+db) 
x[(p-x)+(l-p)ln([^) 

L&   = 
Jo \S-xJ\l-x ^S-xJ 

x[(p-x) + (3-p)ln(|5^) (A.23) 
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We perform the final integration over p to derive /W and I^2\ where / = i"*1) + j(2). 

:/(i) (l-p)ln(l-p) 
n=l 

W 1-F 

1 -22. (    1 ^"+1   /      I?     \ n 

Hll-FWlniF^-^iF^ + J^- ' 

6      *—f      n' 

7T2 ™    (_1)»+W 1\» 
-T + 2^^— (3)   +In21n3 + In([l-F]^)-In2 

n=l ^    ' 

Jo i — X JQ 1 — x 

+ /& (p - x) In f^JL) f-=L + -1 
Jo \S- xj \l — x     3- 

for  f < (1 - F), 

2     (l-p)ln(l-p) -ln2([l-i^)-£ (-l)
n+1 /l-.F\n 

n=l W 
+£ (-i)"

+i (1 

n=l Ö" + In 2 In 3 + ln([l - F)i>) - In 2 

for  F > (1 - JF
1
); 

+ .. 

(A.24) 

:j(2)    ^     [(3-p)ln(3-p)-31n3] 
2       00 

T-E 6      '—'      n 
n=l 

(-1)^ f 1 
3 

In21n3 

+ - [(3 - p) ln3(3 - p) - 3(3 - p) ln2(3 - p) + 6(3 - p) ln(3 - p) 

-31n33 + 91n23-181n3] 

+ 2 ln2t(3 - P)ln2(3 - p) - 2(3 - p)ln(3 - p) - 31n23 + 6In3] 

+ I/^(,_«MI^2_ ^^(3-^(1-.) 
2 Jo 3-z Jo 3-x 

-In 2 JPdx(p-x)l^^l 

- JQ
Pdx (p-x)ln(LJL) (^-L + _L.) . (A.25) 

3-J;/ \l-i     3 - x J ' 
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We are essentially done. Upon multiplying the sum of /W and 1^ by N^^it/'S)4, 

we have the relevant contribution from diagram 2 to the fourth-order energy shift. After 

so much work, one might wonder whether we have achieved anything more. Providen- 

tially, the answer is that, yes, we have. As explained earlier, we have also solved for 

the contribution from the corresponding mirror-image diagram, which is obtained by 

replacing p with -p in Eqs. A.24 and A.25. Perhaps more surprisingly, we have solved 

for the contributions from another pair of mirror-image terms. A swap of F and (1 — F) 

in Eq. A.9 turns it into the formula for the contribution from diagram 3 of Fig. 3.1(b). 

Thus, exchanging F and (1 - F) in Eqs. A.24 and A.25 yields the contribution from 

diagram 3. A further replacement of p with — p gives the contribution from mirror image 

of diagram 3. The cost of calculating diagram 2 is high, but at least we benefit from a 

package deal—4 for the price of 1. 
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Appendix B 

Strong-Coupling Details 

This appendix consists of three parts presenting various calculations described or cited 

in Chapter 3. The first part computes S^ ', S^ , KC(T), and Kc(0), thereby producing 

the results quoted in Eq. 3.29 and making explicit the origin of the factor e7 that appears 

in the prefactors of Eqs. 3.32 and 3.36. The second part of the appendix provides the 

derivation of the first strong-coupling energy correction (see Eq. 3.35). The third part 

derives the second strong-coupling correction (see Eq. 3.36). 

B.l    Calculation of Charge-Channel Averages 

The leap from Eq. 3.28 to Eq. 3.29 requires evaluation of the expectation values 

A    =    (cos [V*0C(T) + y])   , 

D2   =    (cos[^c(r1) + ^]cos^c(r2) + ^])c. (B.l) 

(Recall that time-ordering is implicit in the path-integral definition of (Ä)c in Eq. 3.26.) 

The cosines and products of cosines can be written as linear combinations of terms of 

the form ez, where Z is linear in the charge displacement operators 0C(T) and the charge 

displacement operators are themselves linear in boson creation and annihilation opera- 

tors (see, for example, Haldane [57]). Therefore, one can apply a standard relation for 
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the expectation value of the exponential of a linear combination of boson operators [55] 

<«*> = e*{P}, (B.2) 

which can easily be shown to hold for our charge-integration brackets with implicit 

time-ordering. 

Using Eq. B.2, we discover that 

Dt    =    e-f*c(°)Cos(^) , 

D2    =    ^e-^
K^°)+K^-^coB(irp)+-e-^K^-K^-^)'ii (B.3) 

where Kc(r) is the charge-charge correlation function, 

Kc{r) = (0c(r)0c(O))c . (B.4) 

Eq. 3.29 of Chapter 3 follows immediately. We find S^] by replacing cos[v/5F0c(r)+7rp/2] 

in Sb with Dx. For S^\ we recall that 

([Sh-(Sh)c]2)c = (S^)c-(Sh) 

and apply the formulas for Z>i and D2 accordingly. 

To get the formula for KC(T) (Eq. 3.30), we must labor a bit more. Because the 

unperturbed action S^c' is quadratic in charge displacement operators 0c(wm), S^ fits 

exactly the form for the canonical action of a real scalar field [95]. Consequently, 

(0cKi)0c(-Wn)\   =- JL-^s (B.5) 
V /c |Wm| + ^2- 

From this identity and the relation between 0c(r) and its Fourier transform (recall 

Eq. 3.20), we construct a summation formula for Kc(r): 

1 ,        c-JWmT 

3 L~i I,,   I  |  2U7. (B.6) 

In the zero-temperature (ß -* oo) limit, we may safely transform this sum into 

an integral. Before doing so, however, we should note that, unless the um possess an 
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ultraviolet cutoff, Kc(0) diverges logarithmically. The standard means of imposing such 

a cutoff in Luttinger liquid theory [55] is to insert a factor of e~^m^w on the right side 

of Eq. 3.20. This insertion generates a factor of e~2^m^w in Eq. B.6, yielding 

2|w| 

which is equivalent to Eq. 3.30 in Chapter 3. 

The way is clear for evaluation of the same-time corrrelation function A'c(0). Af- 

ter setting r = 0 in Eq. B.7, we integrate by parts and convert to the dimensionless 

integration variable x = 2u/W. The result is that 

=    -iln(^|) +IeW^) ([°°dxe-*hix- j4U2/*Wdxe-*hix))R.8) 

The first integral in the parentheses equals the negative of 7, the Euler-Mascheroni 

constant [85]. The second integral goes to zero as we take the limit W/U2 —* 00. In this 

limit, the exponential factor multiplying the integrals goes to 1. The final result is the 

following: 

The derivation of Eq. B.9 shows that the coefficient e7 comes from exponentiating 

a secondary part of (öc(0)öc(0)). One might be concerned that Luttinger liquid the- 

ory does not faithfully capture such subsidiary dependences [96]. However, Chapter 3 

presents evidence that these coefficients are general and independent of the high-energy 

band structure. 

B.2    The First Strong-Coupling Correction 

As stated in Chapter 3, in the limit of strong coupling (g —► 1), the first correction (see 

Eq. 3.35) to the open-channel (g = 0) ground-state energy is obtained by diagonalizing 
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the Hamiltonian #New (see Eq. 3.31). This diagonalization can be accomplished through 

another version of the "debosonization" procedure used by Matveev [34]. As we wish 

to "debosonize" the action SNew = S^ + S^ (recaU Eqs. 3.23 and 3.29), it is useful 

to observe that Sfr' corresponds to the Euclidean action for non-interacting fermions 

on a semi-infinite lattice ending at x = 0 [62]. For these fermions, we take 6S(T) to 

correspond to the x = 0 value of the phase field, <f>f(r) = $/(0,r), rather than the 

x = 0 value of the charge displacement field 0/(r) = 0/(0, r). Making 0/(r) = 0 the 

boundary condition at the edge, we find that the properly normalized creation operator 

for a fermion at x = 0 is given by 

where, as usual, W is the bandwidth and vF is the Fermi velocity [62, 55]. ^t(0,r) can 

be expressed in terms of reciprocal-space creation operators: 

V}(0,r)=^L /   dkf£. (B.ll) 

The fermionic energies are cut off in the usual way at W/2, the corresponding wave- 

vector cutoff being A = W/2hvp. 

After these machinations, "refermionization" proceeds apace. Since the unperturbed 

action 50
s is an action for non-interacting fermions, the unperturbed Hamiltonian H^ 

is simply the sum of the single-particle energies of those fermions. On the other hand, 

the perturbation H^ that corresponds to S^ is a term linear in fermion creation and 

annihilation operators. In particular, using Eq. B.9 to determine e~f A'c(°), we obtain 

4S)   =     (   dkhflh, 
J-A 

n? = WoS(^)v/l~/;/t(/» + A), (B,2) 

Not being quadratic in fermion creation and annihilation operators, the fermionic 

Hamiltonian we have derived is not yet in an easily diagonalizable form. To make it so, 
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we follow Matveev [34] in defining a new set of fermion operators such that 

fk = (d+rf)dk. (B.13) 

Plugging this equivalence into Eq. B.12 yields Eq. 3.32. 

One can now perform the Bogoliubov transformation that produces Eq. 3.33. To 

find the correction to the open-channel energy, one notes that H^ ' of Eq. 3.32 has an 

expectation value of zero in the ground state of HQ, which is the open-channel (V = 0) 

part of if New Therefore, if the ground state of HQ is represented by the ket |0), 

(0|üTNew|0) = EQ, where EQ is the ground-state energy for HQ . From the diagonalized 

form of .ffNew (see Eq. 3.33), it is then deduced that the equation for (E^ev/ - E0) is the 

following: 

AS(P) = - / dk{k{0\CtCk + CjCfclO). (B.14) 
Jo 

At this point, it is necessary to know the exact equations for Ck and Ck. As found 

by Matveev [34], for T = V2[8eW2/v
2] cos2(7r/>/2), they are 

Ck   = 
dk + djk 

V2      ' 

r    -        &      dk ~ d~k      I    hvpT    f ■ -^ k ~   ^    V2    -VM|fTn(d + d) 

,       r      v rA   dzk,   dk,-dlk, 

*}/& + ** 

nr   dik'  dk.-dik, 
°\    T^h T^, (B.15) 

As before, the symbol V indicates that only the principal value of the integral is com- 

puted. 

With the explicit equations for Ck and Ck before us, it is clear that, for k > 0, 

Ck\0) - 0, and 

A£(p)=-/ dktk(0\ClCk\0). (B.16) 
Jo 
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Concentrating on what remains, we see that, for k > 0, both the first term of Ck and 

the k' > 0 part of the third term of Ck annihilate the HJp ground state. Hence, 

tn\rtr in\ hvFT       l\ ■     r     fA   dk'    fA   dk"    . wA w t 

hvFv r2      (i i   \ 
Mti+T2)  *2(ek+T*)\k k+Aj- (B-17) 

Plugging into Eq. B.16, we find that 

AU(O) = ~L [
W/2

A±£L _ £! [wl2_dik_ 
stiW      2* I   ek+T*  **j0   ek+T* 

+ii r/2   &«& 
*2 ^o    (ffc + f )(^2 + r2) 

r, /w2    \    r 

Here we have dropped terms that vanish in the limit W/U2 -> oo. Application of the 

identity T = V2[8e^U2/^
2] cos2(7rp/2) yields Eq. 3.35. 

B.3    The Second Strong-Coupling Correction 

The second correction term in the strong-coupling limit (see Eq. 3.36) is derived by 
(2) 

treating S£ (see Eq. 3.29) as a perturbation to the system described by #New of 

Eq. 3.31. Using the standard formula for the grand-canonical potential in the finite- 

temperature path-integral approach [97], 

ft - Q,0 = -— ]JP(A11 connected graphs), (B.19) 

we see that the lowest-order correction to the ground-state energy of .ffNew is given by 

AS(P) = jim I(New|^2)|New), (B.20) 

where |New) is the ground-state ket for -ffNew The minus sign in Eq. B.19 has been 

canceled by the minus sign that arises from the fact that this leading term from s£2) 

corresponds to a first-order graph and therefore carries a factor of -1 [97]. 
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Recalling Eq. 3.29 and observing that the parts of S^' that are independent of p 

are irrelevant to calculation of the fractional peak splitting /, our immediate task is to 

evaluate the quantity 

X(n,r2) = (™\  e-^(°)cos2(^) (New| cos^fa)] cos[v^s(r2)]|New). 

(B.21) 

Under "debosonization" (see Part 2 of this appendix), this becomes 

X{TX,T2)   =   A2 I   dkj   dk2(Kew\\dUd + J) + (d+di)dkl 
J-A       J-A L J

TI 

x\dUd+d^ + (d + d^)dk2\    |New), (B.22) 
L -I To JT2 

where the bracket subscripts indicate that the enclosed operators are evaluated at imag- 

inary times T\ and r2, respectively, and we have used 

A = V cos(Ttp/2)y/2e-ihvFU2/'!r3. (B.23) 

We are now within hailing distance of Eq. 3.36. Using the truncated equations 

for Ck and Ck (recall Eq. 3.34), we express the d^s in terms of these operators. The 

subleading terms in this transformation are negligible as, in the end result, they take us 

beyond second order in V. Similarly, the time-dependence of the operator sum (d + d^) 

is subleading as (d + d^) first appears in the expansion of the diagonalizing operators 

at order V. Accordingly, (d + d^) commutes with H^ev/ to zeroth order and can be 

considered time-independent. In contrast, from Eq. 3.33, we know that Ck(r) = C^e-^1" 

and C\(T) = C\.e^kT. Application of these insights to Eq. B.22 gives 

X(n,r2)   =   2A2 J dhj dfc2(New|Cfcl(r1)Cj2(r2)|New) 

9\2     rW/2 

hvF J0 

2\2   1 - e-{ri-r2)W/2 
=    H • (B.24) 

Hvp Ti- T2 
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We now return to Eqs. 3.29 and B.20.  Switching to dimensionless variables x{ = 

nW/2 and substituting for A, we obtain 

A(% N T>2      2f^P\^U2   f
ßW/2 ,     fXl , 

I _ e~(xi-x2) x (l _ e-*K<l2{xi-X2),W]\ 1 ~ e-(Xl-X2) m (B-25) 

We eliminate one of the integrations by expressing the integrand in terms of x - {xx - x2) 

and observing that in the double-integral the density of states for a given value of x is 

(ßW/2 - x): 

Transformation of Eq. B.26 into Eq. 3.36 follows recognition of the fact that, for x 

on the order of ßW/2, the integrand is effectively zero. This is known from the identity 

Kc (I) = "TRe {e^'^^Ei [- (4U2/*W) (1 + ix)]} , 
(B.27) 

where Ei[-z] is the first exponential integral function [98]. For z > 1, Ei[-z] goes as 

e~z/z. Therefore, the integrand goes to zero as 1/x2 for x > irW/4U2, and the region 

x > W/U2 makes a comparatively negligible contribution to the integral. This conclu- 

sion corroborates the statement made in Chapter 3 that the factor [1 - e-*Kc(2x/W)] 

furnishes an ultraviolet cutoff on the order of i/) = W/U2. Since we calculate in the limit 

ß -♦ oo, we know that ßW/2 > W/U2 and, hence, that the integrand is effectively zero 

for x on the order of ßW/2. We can approximate the weight function (ßW/2 - x) by 

(ßW/2). The result is Eq. 3.36. 
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